
STATUS REPORT ON THE “MERGING” OF THE ELECTRON-CLOUD
CODE POSINST WITH THE 3-D ACCELERATOR PIC CODE WARP*

J.-L. Vay#, M. A. Furman, A. W. Azevedo, Lawrence Berkeley National Laboratory, USA
 R. H. Cohen, A. Friedman, D. P. Grote, Lawrence Livermore National Laboratory, USA

P. H. Stoltz, Tech-X Corporation, USA

Abstract
We have integrated the electron-cloud code POSINST

[1] with WARP [2]–a 3-D parallel Particle-In-Cell
accelerator code developed for Heavy Ion Inertial
Fusion–so that the two can interoperate. Both codes are
run in the same process, communicate through a Python
interpreter (already used in WARP), and share certain key
arrays (so far, particle positions and velocities). Currently,
POSINST provides primary and secondary sources of
electrons, beam bunch kicks, a particle mover, and
diagnostics. WARP provides the field solvers and
diagnostics. Secondary emission routines are provided by
the Tech-X package CMEE.

INTRODUCTION
We have integrated the electron-cloud code POSINST

with WARP–a 3-D parallel Particle-In-Cell accelerator
code developed for Heavy Ion Inertial Fusion (HIF)–so
that the two can interoperate. To the combined package,
POSINST brings the models related to ECE studies, a
mode of operation (thin slice fixed in the laboratory frame
with time as the independent variable) adapted to studies
of ECE in high energy accelerators, specialized
preformatted input and output files, and related routines.
WARP brings 3-D/R-Z time-dependent and X-Y z/s-
dependent modes of operations with complicated
geometries, MAD-like manipulation of accelerator beam
lines, parallelism, advanced diagnostics and interactivity
through the Python interpreter (already used in WARP)
and a graphical user interface. Both codes are run in the
same process and communicate through the Python
interpreter and share certain key arrays (so far, particle
positions and velocities). Currently, POSINST provides
initial and secondary sources of electrons, beam bunch
kicks, a particle mover, and diagnostics. WARP provides
the field solvers and diagnostics. Secondary emission
routines are provided by the Tech-X package CMEE,
which is based, in turn, on the original secondary electron
emission modules in POSINST [3].

DESCRIPTION OF POSINST AND WARP
We provide here an overall description of the codes

POSINST and WARP, in their respective states preceding
the combination. A summary is given in Table 1.

 * Work supported by the US DOE under contract DE-AC03-76SF00098
at UC-LBNL and W-7405-ENG-48 at UC-LLNL
 # JLVay@lbl.gov

POSINST
POSINST has been developed for e-cloud studies in

High Energy accelerators or storage rings such as:
• APS: e+ (e–) short bunches (~1 cm), well-separated

(~0.85-100 m, C~1.1 km), intense (N~5x1010), high-
energy (E~7 GeV, γ~14,000)

• PSR (see Figure 1): single long proton bunch (~60 m,
C=90 m), intense (N~5x1013), low-energy (E
~1.7GeV, γ =1.85)

11/17/00 RJM_ICANS-XV.ppt4

 PSR Layout

Skew Quad

Merging Dipole Stripper Foil

C Magnets

Bump Magnets

Matching Section

Skew Section
Skew Quad

H- Beam

Final Bend

Extraction Line

H-/H0 Dump Line

ED42

ED52

ED02
ED92

ROED1

Circumference = 90m

Beam energy = 798 MeV

Revolution frequency =2.8 MHz

Bunch length ~ 250 ns (~63 m)

Accumulation time ~ 750 ms

 ~2000 turns

Figure 1: PSR Layout

The object of a POSINST simulation is a thin slice of
electrons at a fixed location in the ring subject to their
own self-fields and to the field created by particle bunches
passing through it. The distribution of electrons is
modeled as a collection of macro-particles while the effect
of the charged-particle bunches is modeled as a chain of
external kicks applied onto the macro-electrons. The
possible sources of macro-electrons are (1) photoelectron
emission, (2) secondary electron yield (SEY), (3) residual
gas ionization, and (4) lost protons hitting the vacuum
chamber walls. For each macro-electron, the self-field is
computed by summing the contribution of fields from
either all the other macro-electrons, or the nodes of a grid
on which the electronic charge density has been
deposited. The boundary condition is either open or a
perfectly conducting pipe (surface charges included) with
elliptical or rectangular geometry, and a possible
antechamber. POSINST is made of about 9000 lines of
code in FORTRAN77 with a few lines of FORTRAN90.

In Fig. 2, the number of macroelectrons as a function of
time illustrates the buildup of electrons in PSR after the
passage of three bunches, as simulated by POSINST.

Unknown
LBNL-57173

Figure 2: POSINST simulation of PSR

WARP
WARP is a multidimensional intense-beam simulation
program being developed and used by the Heavy Ion
Fusion Virtual National Laboratory [4], whose goal is to
develop heavy-ion accelerators capable of igniting
inertial-fusion targets for electric-power production. An
artist’s representation of a Heavy Ion Fusion power plant
is rendered in Figure 3.

Figure 3: Artist's conception of a Heavy Ion Fusion power
plant.

A set of parameters for accelerators currently in service
or being considered as steps on the development path
toward HIF are:

• HCX: 1 Pt+ beam, 180 mA, 1.8 MeV, 4 ms,
• IBX: 1 Pt + beam, 500 mA, 1.7 MeV, 250 ns,
• driver: 120 Bi+ beams, 1 A-2 kA, 1.6 MeV-4 GeV,

30 ms-10 ns.
The HCX (High Current eXperiment) currently in

operation at Lawrence Berkeley National Laboratory is
the first transport experiment using a driver-scale heavy-
ion beam. It is designed to address important science
questions involving the optimum beam size and the
preservation of good beam quality during transport. IBX

(Integrated Beam eXperiment) is a possible future
experiment to study the integration of beam injection,
transport, and focusing, while “driver” is the full-power
accelerator needed to ignite the DT capsules.

WARP is being designed and optimized for heavy ion
fusion accelerator physics studies. It allows flexible and
detailed multi-dimensional modeling of high current
beams in a wide range of systems, including bent beam
lines using a “warped” coordinate system (from which the
code derives its name). At present it incorporates a 3-D
description, an axisymmetric R-Z description, a transverse
slice X-Y description, a simple envelope model used
primarily to obtain a well-matched initial state, and
envelope/fluid models used for scoping and design.

The discrete-particle models in WARP combine the
particle-in-cell (PIC) technique commonly used for
plasma modeling with a description of the “lattice” of
accelerator elements. In 3-D and R-Z, WARP is a time-
dependent plasma code - the particles are advanced in
time and the self and applied fields are applied directly to
update the particles' momenta. The calculation can follow
the time-dependent evolution of beams, or can efficiently
be used to study steady-state beam behavior in 3-D or 2-D
R-Z by solving for the self-consistent field only
infrequently or by using an iterative method. The
transverse-slice model is s-dependent, and is effectively a
steady-flow model. The beam can be initially generated
from one of several general distributions or from first
principles via space-charge-limited injection from an
emitting surface. The self-consistent field is assumed
electrostatic: Poisson’s equation is solved on a Cartesian
mesh that moves with the beam. In a bend, the solution is
altered to include the curvature of the coordinates.
Complex conductor geometry can be included in the field
solution using a subgrid-scale, or “cut-cell”, boundary
algorithm to afford a realistic description of the geometry
while minimizing the required grid resolution. Regions
where the physics or the geometry require a small spatial
scale can be resolved as finely as needed using Adaptive
Mesh Refinement, implemented in WARP-R-Z [5]. A 3-D
implementation is under development using the Chombo
package [6]. In addition, a specialized refinement patch
accommodates space-charge-limited injection with very
fast rise time; near the emitting surface, the self-fields are
calculated along independent one-dimensional lines
normal to the surface, with increasing refinement towards
the surface [5].

A general set of finite-length, possibly overlapping,
accelerator elements can be specified, including
quadrupoles, dipoles, accelerating gaps, and elements
with arbitrary multipole content, using a MAD-like
syntax. Individual elements can be defined and chained
together into aggregate elements, which can be further
combined. This is done using standard Python syntax (via
Python objects), though it looks very similar to MAD
syntax. A tool is provided which converts a MAD format
file into a WARP-readable file. The fields of the elements
can be specified at any of several levels of detail. At the
simplest level, the applied fields are axially uniform

within hard-edged regions, and “residence corrections”
are used in the particle mover so that the particles receive
a correct impulse from each element independent of the
number of times they “land” within the element on
discrete time steps. At the next level, the fields are
expressed as axially dependent multipole components. At
the most detailed level, the fields are represented on three-
dimensional grids. Electrostatic elements can be included
from first principles via inclusion of the conductor
geometry as a boundary condition in the solution of the
self-fields. Another set of elements in the 3-D and slice
models specifies the locations and curvatures of bends.
These bends are not physical elements but are the
appropriate coordinate transformations needed to follow
the beam around the bends. WARP handles particle
collisions with any object in the beam line, including the
pipe wall, beam source components, diagnostics (Faraday
cups, etc.).

WARP is written primarily in standard FORTRAN90
and is steered through a flexible and powerful user
interface that uses the scripting language Python (a
graphical user interface is also available). The code runs
on all Unix-based systems, from a variety of workstations
to vector and parallel supercomputers, including the 6000-
processor IBM SP supercomputer at NERSC. Although
WARP is primarily developed on Linux, it also runs on
Windows and Macintosh OS X. Parallelization is
implented using domain decomposition and the standard
message passing interface (MPI) library. WARP consists
of about 115,000 lines of code, distributed in 5,000 lines
of descriptive files, 70,000 lines of FORTRAN90 and
40,000 lines of Python.

MOTIVATION FOR THE INTEGRATION
In high-energy physics, the electron cloud effect is a

consequence of the strong coupling between the beam and
its environment. Many ingredients are needed to properly
describe the effect, such as bunch charge and spacing,
photoelectric yield, beam energy, photon reflectivity,
secondary emission yield, chamber size and geometry,
particle loss rate, vacuum pressure, etc. This implies that a
3-D parallel particle code that includes all the elements
cited above is ultimately needed, as is self-consistency in
some cases.

In heavy ion fusion, there is a strong incentive to fill the
pipe as completely as possible. This results in stronger
interactions between the beam and the pipe, leading to a
higher probability of electron cloud effects and gas
desorption. An illustration is given in Figure 4 where the
beam head is mismatched and particles hit the ESQ
quadrupoles. Until now, the secondary electrons which
would result from such an interaction of particles with
structures were not modeled in WARP. Because there is
the possibility of feedback between the beam bunch and
the electron cloud, a self-consistent description is
ultimately needed. The plan for achieving such a self-
consistent model in WARP is given in Figure 5.

Figure 4: 3-D WARP simulation of the High Current
Experiment (HCX) injector. Particles from the
mismatched head hit the ESQ quadrupoles.

Figure 5: Plan for self-consistent modeling of electron
cloud and ion beam with WARP.

In each case, it is clear from the description of
POSINST and WARP given in the previous section that
each code can provide functionalities required by the
other.

THE INTEGRATION PROCESS
The following modifications were made to POSINST:

1. in collaboration with Tech-X, the SEY
routines were extracted and packaged into the
stand-alone library CMEE, distributed by
Tech-X [7]. In the process, the calls to IMSL
routines were replaced with calls to routines
from open-source mathematical libraries
(included in CMEE),

2. POSINST was modified for compatibility with
the Python wrapper FORTHON [8]. In the
process, FORTRAN77 common blocks were
translated into descriptive files. Once parsed
by FORTHON, the descriptive files are
converted into FORTRAN90 modules and C
routines which link the variables defined in the

modules (including FORTRAN90 derived
types) to Python objects,

3. the main subroutines (controlling the
execution at a high level) were translated to
Python, giving full control of POSINST from
Python,

4. the particle data structure was modified to
match WARP’s data structure.

The modifications 2-4 opened the way for very flexible
communications between WARP and POSINST. It is
worth underlining that this is not a merge; each code is a
separate entity that stands on its own. In practice, two
Python packages (one for WARP, one for POSINST)
exist and can be invoked in Python separately or
concurrently. For a run which requires capabilities from
both packages, both WARP and POSINST variables are
instantiated at the Python level. Since Python can handle
separate name-spaces, WARP and POSINST variables
coexist without conflict or confusion, even though some
variables might have the same name in FORTRAN. At
the Python level, the discrimination comes from a prefix
added to the variable name. For example, the FORTRAN
variable x (particle position along axis x in POSINST) is
accessed through ‘pos.x’ in Python. The FORTRAN
variable xp (particle position along axis x in WARP) is
accessed in Python through ‘top.xp’ (WARP is made of
several packages, including the package ‘top’). Although
separate name spaces are desirable for concurrent access
to multiple packages, it is sometimes advantageous to
have variables declared in two different packages sharing
the same memory location. This is the case for the
variables x (from POSINST) and xp (from WARP), given
in the preceding example. Although declared in two
separate packages, they describe the same quantity and
should point to the same memory location. It turns out to
be trivial at the Python level if the packages have been
created using FORTHON, since the Python line
‘pos.x=top.xp’ suffices to ensure that both variables share
the same memory location.

At present, POSINST provides the main input deck, the
main control loop, the initial and secondary sources of
electrons, the beam-bunch kicks, the particle mover, and
diagnostics. WARP provides the field solvers and
additional diagnostics. Secondary emission routines are
provided by the Tech-X package CMEE.

Finally, a specialized page was added to the main
notebook in WARP’s graphical user interface. It allows
the user to run POSINST interactively. A typical run
using the graphical user interface follows the following
steps:

1. select an input deck,
2. select the level of verbosity and whether to use

the POSINST (default for now) or the WARP
routines for field solution,

3. run,
4. plot data already in memory using WARP

diagnostic GUI pages or commands entered at
the Python prompt,

5. load the data saved in files into memory and
plot.

Figures 6 and 7 illustrate the use of the GUI and
plotting of data. The data saved into files can also be
accessed later for post-processing using the GUI or other
software.

Figure 6: Example of POSINST run using WARP's
graphical user interface. Electrons dynamics was
simulated during the passage of four buckets in PSR.

Figure 7: Electronic density as a function of time (PSR).

CONCLUSION
We have successfully modified the code POSINST so

that it can cooperate with WARP through the scripting
language Python. Although each code keeps its identity
and can run “standalone,” they can now run in symbiosis
to solve problems that are beyond the reach of each code
alone. Taking advantage of multiple name-spaces in
Python and features of the FORTRAN90-to-Python
wrapper FORTHON, efficiency was achieved by sharing
the particle data memory locations between the two
packages, without any added complexity. The
combination provides the third dimension and parallelism
to POSINST and secondary electrons physics to WARP,
enabling the combined package to fulfill missions in High
Energy Physics, Heavy Ion Inertial Fusion, and other
fields.

REFERENCES
[1] Pivi MTF, Furman MA, ``Electron cloud development in the

Proton Storage Ring and in the Spallation Neutron Source'', Phys.
Rev. STAB, vol.6, no.3, March 2003.

[2] D. P. Grote, A. Friedman, I. Haber, "Methods used in WARP3d, a
Three-Dimensional PIC/Accelerator Code", Proc. of the 1996
Comp. Accel. Physics Conf., AIP Conference Proceedings 391, p.
51 (1996).

[3] M. A. Furman and M. T. F. Pivi, “Probabilistic Model for the
Simulation of Secondary Electron Emission”, PRSTAB/v5/i12/
e124404 (2003).

[4] http://hif.lbl.gov
[5] Vay JL., Colella P., Kwan JW., McCorquodale P., Serafini DB.,

Friedman A., Grote DP., Westenskow G., Adam JC., Heron A.,
Haber I., “Application of adaptive mesh refinement to particle-in-
cell simulations of plasmas and beams”, Phys. of Plasmas, 11(5),
2928-2934, 2004.

[6] P. McCorquodale, P. Colella, D. P. Grote, J.-L. Vay, “A Node-
Centered Local Refinement Algorithm for Poisson's Equation in
Complex Geometries”, J. Comput. Phys., in press

[7] http://www.txcorp.com/technologies/CMEE
[8] For more information, contact D. P. Grote at DPGrote@lbl.gov.

Table 1. Summary of POSINST and WARP functionalities

Functionality POSINST WARP
Particles • Various with pre-defined attributes, or generic

particle (given q, m); x, y, βx, βy, βz (β=v/c)
• q, m, weight; x, y, z, ux, uy, uz (u=γv)

+ user- (or pre-) defined attributes

Self-fields • electrostatics on regular cartesian grid
- 2-D XY, 1-D R

• perfect-conductor B.C.s (surface charges
included)
- elliptical or rectangular vacuum chamber

geometry, with a possible antechamber

• electrostatic in moving window on regular
cartesian grids
- 3-D XYZ warped coordinates, 2-D XY, 2-D

R-Z, 1-D R, 1-D Z
• AMR available for R-Z, in development for 3D

with CHOMBO
• images from embedded conductors through "cut-

cell" method
External
Fields

• beam bunches
- multi-bunch passages
- bunch divided longitudinally into Nk kicks

(2D, purely transverse)
• certain magnetic elements

• lattice elements
- sharp-edged, multipole expansion, data or

first-principles on 3-D grid
- MAD-like description of lattice (MAD-to-

WARP translator available)
 pre-defined elements: dipoles, accelerating

gaps, quadrupoles, sextupoles, …
 user-defined elements using box, sphere,

cylinder, cone, torus, … primitives
Independent
variable

• t: evolution of thin slice at fixed station • s: progression of thin slice along propagation
axis in steady flow

• t: evolution of thick (3-D window) or thin slice
at fixed or moving station; 3 modes:
- pure time-dependent (Δtfieldsolve=Δtparticles)
- quasi time-dependent (Δtfieldsolve>Δtparticles)
- “steady-state” (converges to steady-flow

solution iteratively)
Particle
generation

• photoelectron emission (very simplified input
model)

• secondary electron yield (SEY) (detailed model
included)

• residual gas ionization
• lost protons hitting the vacuum chamber walls

• beam loading
- predefined KV, semi-gaussian, user-defined

function, …
- list from previous run or data (can be time-

dependent)
• beam injection

- Child-Langmuir, Gauss pill-box, fixed current
- from flat or curved surface with special mesh

refinement patch for fast rise-time
Diagnostics • histories of electron density, energy, % loss,

energy loss, angle loss, ionization, SEY, …
• visualization with third party software

• fields, particles, lattice, moments, histories, user-
defined, dumps,

• 2-D line, contours, scatter plots, 3-D surface
through Gist/OpenDX

Cross-
platform

• ~9000 lines of FORTRAN77 (a few in F90)
• uses IMSL

• uses D.P. Grote F90+Python wrapper
FORTHON
- ~5000lines of descriptive files, ~70000 lines

of F90, ~40000 lines of Python
Parallel • N/A • MPI, 1-D decomposition in Z (different for

particles and fields)
Interpreter • N/A • Python

- provides interactivity, extensibility, steering
- access to a huge collection of freely available

third party libraries and softwares
GUI • N/A • interactive plotting, Python-smart editor, step-

by-step running
• user-expandable

Others • N/A • envelope/fluid equation solvers

