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Abstract

If the particle distribution in phase space is gaussian, its projection onto the nominal amplitude axis
is not gaussian due to the “dynamical beta function effect.” In this note we derive the appropriate
formula, assuming that the beam is matched to the dynamical lattice functions.

1 Introduction.

When carrying out simulations (or measurements) of the particle density of a colliding beam, it is useful
to know the limiting form when the beam-beam parameter is very small. In this limit, one can expect the
integer and half-integer resonances to play the most significant role, and one can then calculate analytically
the dependence of the density on the tune, assuming a certain functional form of the phase-space density.

In this limit, and to the extent that one is interested in the beam core, one can describe the beam-
beam collision in linear approximation by a focusing kick whose strength is proportional to the beam-beam
parameter ξ. As a result of this kick, the effective (or “dynamical”) lattice functions α and β seen by the
beam are different from the nominal ones and are functions of the tune and ξ. The beam is matched to the
dynamical, rather than to the nominal, lattice functions

The problem we address here is not complicated, but it is not a tautology: even though we assume a
certain functional form (gaussian) for the phase-space density, its projection onto the nominal amplitude axis
is nontrivial because of the dynamical effect mentioned above. The complication arises from the mismatch
between the dynamical functions affecting the beam and the nominal quantities used to calculate (or measure)
the density.

2 Calculation.

Consider a gaussian beam with a large number N0 of particles circulating in a linear, uncoupled, machine.
The horizontal particle distribution at some observation point where there is no orbit distortion is given by

ρ(x, x′) ≡ 1
N0

dN

dxdx′
=

1
2πε

exp
[
−σ
′2x2 − 2χxx′ + σ2x′2

2ε2

]
(1)

1



with a corresponding expression for the vertical counterpart. By definition, this distribution is normalized
to unity, ie, ∫

dxdx′ρ(x, x′) = 1 (2)

which implies the equality
ε2 = σ2σ′2 − χ2 (3)

The average of any function f(x, x′) is given by

〈f(x, x′)〉 =
∫
dxdx′ρ(x, x′)f(x, x′) (4)

In particular, σ, σ′ and χ are the averages

σ2 = 〈x2〉, σ′2 = 〈x′2〉, χ = 〈xx′〉 (5)

The density is such that the linear averages 〈x〉 and 〈x′〉 vanish, in accordance with the assumption that
there is no closed orbit distortion at the observation point. The quantity ε is the beam emittance, and it is
given by the usual expressions, Eqs. (3-5).

Now if the lattice functions at the observation point are α, β and γ (with βγ = 1 + α2), we say that the
beam is matched to the lattice if it satisfies the conditions

σ2 = εβ, σ′2 = εγ, χ = −εα (6)

in which case the density (1) reads

ρ(x, x′) =
1

2πε
exp

[
−γx

2 + 2αxx′ + βx′2

2ε

]
≡ 1

2πε
exp

[
− 1

2ε
(x, x′)M

(
x
x′

)]
(7)

where M is the matrix

M =
(
γ α
α β

)
(8)

Assume now that a linear kick is added to the lattice. This kick modifies the lattice functions and the
tune of the ring. In the case when the kick is caused by a beam-beam collision, the modified lattice functions
are referred to as “dynamical,” and we call them α′, β′ and γ′ (with β′γ′ = 1+α′2). If our observation point
is immediately before the collision point, the dynamical functions are given by the matrix equation(

C ′ + α′S′ β′S′

−γ′S′ C ′ − α′S′
)

=
(
C + αS βS
−γS C − αS

)(
1 0

−4πξ/β 1

)
(9)

where C ≡ cos(2πν), C ′ ≡ cos(2πν′), the S’s are the corresponding sine functions, ν is the tune, and ξ is
the strength of the beam-beam kick. The standard solution for this equation is [1]

C ′ = C − 2πξS (10a)

α′ = α− 2πξ
β′

β
(10b)

β′

β
=

S

S′
=

1√
1 + 4πξ cot(2πν)− (2πξ)2

(10c)

As a result of this beam-beam kick, the beam becomes matched to the dynamical lattice functions (we
assume that the emittance does not change). Thus the dynamical matching conditions are

(σ2)′ = εβ′, (σ′2)′ = εγ′, (χ)′ = −εα′ (11)
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and the new distribution is

ρ′(x, x′) =
1

2πε
exp

[
− 1

2ε
(x, x′)M ′

(
x
x′

)]
, M ′ =

(
γ′ α′

α′ β′

)
(12)

Let us now define the normalized coordinates q and p via(
x
x′

)
= U

(
q
p

)
, U ≡ 1√

β

(
β 0
−α 1

)
(13)

The important thing to notice here is that it is the nominal lattice functions that enter the definition q and
p, not the dynamical ones. The distribution (12) then reads

1
N0

dN ′

dqdp
=

1
2πε

exp
[
− 1

2ε
(q, p)B

(
q
p

)]
(14)

where B is the matrix B = UTM ′U and we have used dxdx′ = dqdp.
We now go to action-angle variables A and φ via the transformation

q = A cosφ (15a)
p = −A sinφ (15b)

and we define the dimensionless “normalized amplitude” Â via

Â2 ≡ A2

ε
=
q2 + p2

ε
=
x2 + (βx′ + αx)2

σ2
(16)

Notice, again, that it is the nominal, not dynamical, quantities that appear here. In terms of these variables,
the dynamical density (14) reads

1
N0

dN ′

dÂ2dφ
=

1
4π

exp

[
− Â

2

2
(
B11 cos2 φ+B22 sin2 φ− 2B12 sinφ cosφ

)]
(17)

where we have used dqdp = (ε/2)dÂ2dφ. If we are interested only in the amplitude distribution, we integrate
over φ and obtain

1
N0

dN ′

dÂ2
=

2π∫
0

dφ
1
N0

dN ′

dÂ2dφ
=

1
2

exp

[
− Â

2

4
(B+ +B−)

]
I0

[
Â2

4
(B+ −B−)

]
(18)

where I0 is the usual modified Bessel function, and the B± are the eigenvalues of the matrix B. These are
given by

B± =
1
2

(
T ±

√
T 2 − 4D

)
,

{
T ≡ trB = βγ′ + γβ′ − 2αα′

D ≡ detB = 1
(19)

Eq. (18), along with definitions (19), is our main result. In the limit when ξ = 0, B is the unit matrix, and
Eq. (18) reduces, as it should, to a simple gaussian,

1
N0

dN ′

dÂ2
=

1
2
e−Â

2/2 (20)

Finally, we note that a simplification occurs if α = 0 at the collision point, as is normally the case. In
this case we obtain, with a bit of straightforward algebra,

T = 2r (1 + 2πξ cot(2πν)) (21a)√
T 2 − 4D =

4πξr
| sin(2πν)| (21b)
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where we have defined r ≡ β′/β, which is given by Eq. (10c). This completes our calculation.
A more conventional way to express the dynamical density is obtained from Eq. (12) by integrating out

x′. If we define the normalized coordinate x̂ ≡ x/σ, we obtain

1
N0

dN ′

dx̂
=
e−x̂

2/2r

√
2πr

(22)

Figure 1 shows the densities (dN ′/dÂ2)/N0, Eq. (18), and (dN ′/dx̂)/N0, Eq. (22), for two selected values
of the tune. Obviously, for ξ = 0, one obtains a gaussian density in either case (note, however, that the
normalization is different in both cases). The conventional density is more sensitive to the tune and to ξ
than the normalized amplitude density, particularly near the beam center. This is because the slope of this
latter as a function of Â2/2 is proportional to T/2 = 1 +O(ξ2), while the slope of the conventional density
as a function of x̂2/2 is proportional to r−1 = 1 +O(ξ).

Figure 2 shows the results of a weak-strong multiparticle simulation [2] for νx = 0.57, νy = 0.64 and
ξ = 0.03 along with the analytic results derived above. The simulation parameters correspond to those
of PEP-II [3] and include long-bunch effects and synchrotron oscillations. The density is that of the weak
(low-energy) beam; it is obtained by tracking 1024 representative particles for 5000 turns, ie., approximately
one damping time. The ring lattice is represented by a decoupled 4 × 4 linear map. The amplitudes and
coordinates of all particles are recorded at every turn, and then binned into a histogram in Â2 or x̂2, which
is plotted in the figure.
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Figure 1: Top: the density (dN ′/dÂ2)/N0, Eq. (18), for two values of the tune. Bottom: the density
(dN ′/dx̂)/N0, Eq. (22).
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Figure 2: Simulation results along with the same analytic results shown in Fig. 1.
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