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Abstract

We provide a brief status report on measurements and
simulations of the electron-cloud (EC) in the Fermilab
Main Injector (MI). Areas of agreement and disagreement
are spelled out, along with their possible significance.

INTRODUCTION

An upgrade to the MI is being considered that would in-
crease the bunch intensity Nb from the present ∼ 1× 1011

to 3×1011, corresponding to a total pulse intensity Ntot =
16.4 × 1013, in order to generate intense beams for the
neutrino program [1]. Such an increase in beam intensity
would place the MI in a parameter regime where other stor-
age rings have seen a significant EC effect. Motivated by
this concern, efforts have been undertaken over the recent
past to measure [2–5] and simulate [6–15] the magnitude
of the effect and to assess its operational implications on
the proposed upgrade.

We report here a summary of simulation results obtained
with the code POSINST [16–19], and certain benchmarks
against measurements. Unless stated otherwise, the simu-
lation parameters used are shown in Tab. 1. These represent
a slightly simplified version of the MI operation.

DEPENDENCE ON SEY

During 2006 an RFA-type electron detector was installed
in a field-free straight section of the MI and was used to
measure the electron flux Je incident on the walls of the
vacuum chamber for various bunch intensities Nb and fill
patterns [2–5]. Fig. 1 of Ref. [11] summarizes the mea-
surements.

The primary unknown variable in the EC intensity build-
up is the peak value of the secondary electron yield (SEY)
δmax. By fixing other lesser variables and then running
simulations for various assumed values of δmax, we were
able to fit the measurements [11], as shown in Fig. 1, ob-
taining 1.25 ∼< δmax ∼< 1.30. The close clustering of the
solutions, which were obtained for rather varied beam con-
ditions, indicates consistency in the simulation model and
the measurements. For all other results presented in this
article, we assumed δmax = 1.3.

The EC number density ne inferred from these measure-
ments is sufficiently low that it is not expected to cause
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Table 1: Selected MI parameters used in most simulations.

Ring and beam
Ring circumference C = 3319.419 m
RF frequency fRF = 52.809 MHz
Harmonic number h = 588
Beam fill pattern 500 full + 88 empty
Beam energy Eb = 8.9− 120 GeV
Bunch profile 3D gaussian
Transv. RMS bunch sizes

at 8.9 GeV † (σx, σy) = (2.291, 2.806) mm
RMS bunch length σz see Fig. 4
Pipe cross sect. at RFA round
Pipe radius at RFA a = 7.3 cm
Pipe cross sect. at dipole elliptical
Pipe semiaxes at dipole (a, b) = (6.15, 2.45) cm
Dipole bending field 0.0115 T/(GeV/c)
Secondary e− parameters
Peak SEY δmax = 1.2− 1.4
Energy at δmax Emax = 292.6 eV
SEY at 0 energy δ(0) = 0.2438× δmax

†At other energies, σx and σy were assumed to scale as γ−1/2.

significant detrimental effects on the beam. This absence
of an effect is, indeed, consistent with observations.

10
-3

2

4

6

8
10

-2

2

4

6

8
10

-1

2

A
/
m
*
*
2

1.41.31.2
dmax

 1a  1b

 1c  1d

 2a  2b

 3   4

field-free region

Figure 1: Simulated electron flux Je vs. δmax (curves) and
RFA measurements (thick horizontal lines) for the respec-
tive fill patterns. The bowties indicate the intersections of
the measurements with the simulations for each case [11].



DEPENDENCE ON Nb

The dependence of ne on Nb is shown in Figs. 2-3,
where ne represents the one-turn average of the electron
density in the entire section being simulated (the local
density in the neighborhood of the beam is substantially
higher) [12–14]. Also shown is the average electron-wall
impact energy E0.
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Figure 2: Average ne and E0 in the field-free region con-
taining the RFA, at injection and extraction beam energy.
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Figure 3: Average ne and E0 in a dipole bending magnet
at injection and extraction beam energy.

DEPENDENCE ON Eb

The bunch length varies substantially as the beam energy
Eb ramps from 8.9 GeV to 120 GeV, as seen in Fig. 4. The
primary dependence of the EC build-up on Eb is through
bunch length. The simulated density ne vs. Eb is shown
Figs. 5-6 for two selected values of Nb. There is apprecia-
ble variation of ne only near transition energy, where σz is
smallest, as expected.
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Figure 4: Measured 95% bunch length during the ramp.
Transition is crossed just above 20 GeV/c.
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Figure 5: Average ne and E0 vs. Eb in the RFA field-free
region for two values of Nb.
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Figure 6: Average ne and E0 vs. Eb in a dipole bending
magnet for two values of Nb.

DEPENDENCE ON fRF

We compared [12] ne for the actual RF frequency fRF =
53 MHz (h = 588) against a hypothetical value of 212
MHz (h = 4 × 588 = 2352). For the purposes of this
exercise we assumed, for fRF = 53 MHz, a fill pattern
consisting of 548 consecutive filled buckets, each with Nb

protons and RMS bunch length σz , plus 40 empty buckets.
For 212 MHz we assumed 2192 filled buckets, each with
Nb/4 protons and RMS bunch length σz/4, plus 160 empty
buckets. All other quantities were kept fixed. The total
number of protons per pulse in either case is Ntot = 548×
Nb = 2192× (Nb/4). Results are shown in Fig. 7.
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Figure 7: Average ne vs. Ntot in the RFA field-free region
for fRF = 53 and 212 MHz.

DISCUSSION
Having simulated various current operational scenarios

and compared our results against RFA measurements, we



have obtained a nicely consistent picture indicating δmax ∼
1.3, assuming Emax = 293 eV. Although this value for
Emax is realistic, we do not have evidence that it is the
actual value for the MI vacuum chamber (a typical range
for Emax is 250–350 eV). It is generally possible to trade
off, to some extent, δmax and Emax for each other in any
given fit to the data. Pinning down both variables requires
a broader set of simultaneous fits than we have carried out,
and this exercise remains to be done.

Extrapolating our simulations to higher beam intensi-
ties, we predict a significant increase of ne. For field-
free regions, ne exhibits a threshold behavior in Nb, with
approximately linear dependence on (Nb − Nb,th) above
the threshold Nb,th. For a dipole bending magnet there is
no indication of threshold behavior in Nb: ne increases
rather strongly, and non-monotonically, for Nb above ∼
1 × 1011. At the design goal, Ntot = 16.4 × 1013, we es-
timate the time-averaged, volume-averaged ne in the range
(0.1− 1)× 1012 m−3 assuming δmax = 1.3 (the density in
the neighborhood of the beam is substantially higher). The
peak exhibited by ne at Nb ∼ 1 × 1011 in a dipole can be
explained from the electron-wall impact energy E0: when
Nb ' 1 × 1011, E0 crosses 300 eV, the assumed energy
value for the location of the SEY peak. The actual value
of Nb where ne peaks may depend on the actual value of
Emax. The dependence of E0 on Nb, however, does not
explain all simulation trends; this issue remains to be better
understood. We do not yet have an explanation for the in-
crease of ne atNb∼<3×1011 at injection energy in a dipole
magnet.

The dependence of ne on beam energy Eb is generally
weak except near transition energy, given that the bunch
length has strongest variation about this energy. This trans-
lates into strong variation of the strength of the beam-
electron kick, hence into strong variation of E0, hence
of the effective SEY, hence of ne. For E0 significantly
larger than Emax the effective SEY is smaller that for
E0 ∼ Emax. This accounts for the reversal in the depen-
dence of ne for the two selected values ofNb when compar-
ing the field-free region and the dipole magnet. The mild
sensitivity of the EC to Eb is consistent with recent mea-
surements via the microwave dispersion technique [20], but
not with RFA measurements. These latter show a rather
strong dependence on Eb, typically peaking at Eb ∼ 60
GeV. This issue remains to be clarified.

Going to a hypothetical fRF 4 times larger than the
present 53 MHz, with 4 times smaller bunch population,
leads to a threshold of the EC build-up ∼ 2 times higher
in Ntot in a field-free region relative to the 53 MHz case.
Above threshold, including the design goal of Ntot =
16.4 × 1013, the density is ∼ 2 − 4 times lower for the
higher fRF than for the lower. Preliminary simulations for
a dipole bending magnet, however, do not show such a ben-
eficial trend at the higher fRF, and remain to be properly
analyzed and understood.

Our overall experience with simulations of proton stor-
age rings, including the MI, consistently show that the vac-

uum chamber SEY is the main variable that determines ne

and hence the severity of all EC related effects. The surest
way to decrease these effects, therefore, is to decrease the
SEY of the vacuum chamber by means of low-emission
coatings, grooved surfaces, clearing electrodes, appropri-
ate magnetic fields, etc.

We have checked the numerical stability of our simula-
tion results against computational parameters such as the
integration time step, space-charge grid size and number
of macroparticles, but not in all combinations. While we
have confidence in our results, a final check for any given
specific set of physical parameters remains to be carry out.
In any case, a clear qualitative picture of the EC build up
in the MI field-free regions and dipole bending magnets is
emerging.

Preliminary simulations of the effects from the EC on
the beam have been carried out [15]. These calculations in-
dicate a threshold ne ∼ 1012 m−3 for significant emittance
growth, which is in the range of our EC density estimates.
Therefore, it is important to further pursue such investiga-
tions.

Recent simulations [21] of the EC build-up for the pro-
posed PS2 storage ring at CERN show qualitative results
remarkably similar to those summarized here for the MI. It
appears, therefore, that a sustained program of benchmarks
will benefit the beam dynamics studies in both machines.
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