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δ̂(0) = 1.3, Ê(0) = 400 eV, p = 2, and Es = 5 eV. The backscattered and
rediffused components of the SEY are ignored here. 12

5 Power deposition per unit length in the dipole bending magnets. All
parameters correspond to the reference case except for Y ′ and δ̂, whose
values are labeled. 28

6 Power deposition per unit length in the dipole bending magnets as a
function of δ̂ for fixed Y ′ = 0.2. All other parameters correspond to the
reference case. 28

7 Power deposition per unit length in the field-free regions in the arcs. All
parameters correspond to the reference case except for Y ′ and δ̂, whose
values are labeled. 29

8 Convergence rate of the power deposition as a function of the number of
kicks. Top: field-free section. Bottom: dipole bending magnet. In this latter
case, the isolated point on the graph for 1 kick, labeled “nk=1, modulated,”
represents the result of using the impulse approximation modified by a
cyclotron phase factor, as described in Sec. 6 of Ref. 3. 30

9 Power deposition per unit length in the dipole bending magnets for Es = 10
eV. Other parameters are the same as those in Fig. 5. 31

10 Energy distribution dδ/dE of emitted secondary electrons for a
normally-incident electron with energy E0 = 100 eV, including the elastic
and rediffused components. Other parameters are the same as in Fig. 4, with
which this figure should be compared. 32

11 SEY for copper, Eqs. (16) and (17), including the elastics and rediffused
components, whose parameters are described in Ref. 11. Other parameters
are the same as those in Fig. 3. Comparing with this latter case, one sees an
excess of electrons at low values of E0. 32

List of Tables
1 LHC synchrotron radiation parameters. 5
2 Parameter values and simulation conditions. 22
3 Ferromagnet analog of the ECE. 23

2



  

1 Introduction.

The electron-cloud effect (ECE) for the LHC has been actively investigated for this
past year, particularly concerning the energy deposition by the electrons on the walls of
the beam screen [1–10]. In this note we present an update of our calculations for the power
deposition arising from the ECE in the dipole bending magnets in the arcs of the LHC,
whose preliminary results were reported in Ref. 3. In addition, we estimate here the power
deposition in the field-free regions in the arcs.

In all results presented here we assume that the photon reflectivity R is close to
unity. Simple geometrical arguments indicate that lower values of R imply lower values
for the power deposition in the dipole magnets. However, a detailed calculation for low
R is much more involved, and we intend to carry it out separately. We explore here the
dependence of the power deposition on other parameters such as the quantum efficiency
Y ′, the characteristic energy Eph and width σph of the photoelectron distribution, the peak

value of the secondary emission yield (SEY) δ̂, and the characteristic energy of the emitted
secondary electrons Es. Other parameters, such as beam energy, number of particles per
bunch, bunch spacing, etc., are held fixed at their nominal values. We neglect electrons
generated by ionization of the residual gas because, for typical parameters, they constitute
a negligible source compared to photoemission [11].

The main changes relative to our preliminary report are the following: (a) we now
discount those photons whose energy is less than the work function of the surface; (b) for
the purposes of facilitating a comparison with results presented in Ref. 10, we now ignore
the elastically-backscattered and rediffused components of the SEY (we comment on this
particular approximation in Sec. 10.5); (c) we have updated certain parameters of the SEY
so as to better represent the data for copper; and (d) we now fully include bunch length
effects. In addition, we now use a better approximation for the electric field produced by
the bunch, so that it represents the true field of a gaussian charge distribution and it also
satisfies the perfect-conductor boundary condition on the surface of the beam screen.

For the specific values Y ′ = 0.2, δ̂ = 1.3 and Es = 5 eV, our present estimate of
the power deposition per unit length in the dipole magnets and in the field-free regions of
the arcs is ∼ 0.75 W/m and ∼ 4 W/m respectively. The value 0.75 W/m for the dipole
magnets is more than a factor of 6 below our preliminary estimate [3]. Items (a) and (b)
above contribute more than a factor of 2 each to the decrease of the estimate, and items
(c) and (d) together roughly contribute an additional 50%. It turns out that, although
our new expression for the electric field is physically more satisfactory than the linearized
approximation we used earlier, the change has the effect of lowering the estimate of the
power deposition by only ∼ 10%.

The power deposition is sensitive to details of the secondary emission process at
low energies, in the range 5 − 10 eV. Thus, if one assumes Es = 10 eV instead of 5 eV,
the power deposition per unit length in the dipoles is reduced by roughly 50%. Similarly,
if one includes the elastic and rediffused components of the SEY at fixed Es = 5 eV, the
estimate for the power deposition increases by roughly 150%. The physical origin of this
sensitivity [9,10,12] is the fact that the minimum energy required by an electron to cross
the beam screen in one bunch spacing (25 ns), which is 6 eV, is in the mid-range of values
we consider for Es. Electrons slower than this get kicked by more than one bunch, leading
to a substantially higher collision energy, and hence power deposition, on the walls of the
beam screen. On the other hand, the power deposition is not very sensitive to details of
the photoelectron energy distribution parameters in the range 5 − 10 eV. We attribute
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this fact to bunch-length effects.
Our results are in good agreement with those in Ref. 10 for those cases in which a

comparison is meaningful. This agreement strengthens our confidence in the methods used
to simulate the ECE, and re-emphasizes the relevance of low-energy secondary emission
parameters for the power deposition in the LHC beam screen. It is important, therefore,
to pin down these parameters so that a more reliable estimation of the power deposition
can be obtained from our simulations.

2 Machine model.
For the purpose of studying the electron-cloud effect we use a simplified model to

represent the beam, the beam screen and the elements of the arcs [3]. Here is a brief sum-
mary, in the interest of completeness: The beam is assumed to be composed of identical,
evenly-spaced bunches separated by sB = 7.48 m; there are no gaps in the bunch train.
We assume a bunch population Np = 1.05 × 1011 protons per bunch, average transverse
rms beam sizes σx = σy = 0.3 mm and rms bunch length σz = 7.7 cm.

We represent the cross-section of the beam screen [13] by an ellipse with semiaxes
a = 2.2 cm and b = 1.8 cm, as sketched in Fig. 1. This approximation allows us to use
the exact formula for the electric field produced by the beam and by the space charge of
the electrons in the cloud [14].
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Figure 1: In our model, we replace the actual transverse cross-section of the
beam screen by the inscribed ellipse.

We assume that the “ring” consists of 1232 identical, evenly-spaced dipole bending
magnets of length 14.2 m and 1232 field-free sections of length 7.44 m in between every
pair of dipole magnets. The basic periodic unit of this model ring therefore has a length
Lu = 14.2 + 7.44 = 21.64 m. These lengths add up to a circumference of 26660.48 m.
The dipoles have a magnetic field B = 8.4 T, and the beam orbit through them has a
radius of curvature ρ = 2784.32 m. The section of arc subtended by a dipole magnet is
∆θ = 2π/1232 = 5.1× 10−3 rad.
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3 Photoelectron emission.
For a beam energy E = 7 TeV, the critical energy of the synchrotron radiation from

a proton traversing a dipole magnet is given by

Ecrit =
3h̄c

2ρ
γ3 = 44.1 eV (1)

where γ is the usual relativistic factor. Each proton generates, on average,

Nγ/p,tot =
5αγ

2
√

3
∆θ = 0.4 (2)

incoherent photons of all energies and directions upon traversing any given dipole bending
magnet, where α ' 1/137 is the fine structure constant (coherent photons can be com-
pletely neglected due to their very low energy). Those photons whose energy is below the
work function of the metal do not yield photoelectrons. The fraction of photons whose
energy Eγ is below a cut-off value Ecut < Ecrit is

∆Nγ/p,tot(Eγ ≤ Ecut)

Nγ/p,tot

' 33/225/3

5Γ(1/3)

(
Ecut

Ecrit

)1/3

= 0.55 (3)

where the numerical value 0.55 corresponds to Ecut = 4 eV, which we assume to be the
value of the work function. Therefore only 45% of the 0.4 emitted photons contribute to
photoproduction. Table 1 summarizes the relevant parameter values.

Table 1: LHC synchrotron radiation parameters.

Beam energy, E [TeV] 7
Relativistic factor, γ 7460.52
Dipole magnet field, B [Tesla] 8.4
Dipole magnet length, LB [m] 14.2
Bending radius, ρ [m] 2784.32
Dipole magnet arc section, ∆θ [mrad] 5.1
Critical energy, Ecrit [eV] 44.1
No. of radiated photons per proton, Nγ/p,tot 0.4
No. of radiated photons per proton above 4 eV, Nγ/p 0.18

If Y is the number of photoelectrons generated per incident photon and Y ′ the
number of photoelectrons generated per absorbed photon, then [3, 7, 11]

Y ′ =
Y

1−R
(4)

where R is the photon reflectivity. The parameter Y has an implicit dependence on R
such that Y → 0 when R→ 1. Assuming that the photon reflection is specular and that
fluorescence can be ignored, it is straightforward to show that the quantity Y ′ represents
the total number of photoelectrons per emitted photon that are generated anywhere at
any time downstream of the emission point [3, 11].
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3.1 Average number of photoelectrons generated per bunch passage.
If R ∼< 1, the photons bounce many times inside the chamber downstream of their

emission point and, as a result, they get distributed quite uniformly both longitudinally
(along the pipe) and transversely before they yield photoelectrons. As a result, the photo-
electrons are also generated approximately uniformly. In a section of the vacuum chamber
of length L the time-averaged number of photoelectrons generated in a time interval equal
to the bunch spacing, sB/c following the passage of a single bunch through a bending mag-
net is [11]

N̄e = Y ′Nγ/pNp
L

Lu

(5)

where Y ′ represents here, and in the rest of this note, an effective yield, i.e., an average
over the photon spectrum.

When R ' 0 the photons essentially do not bounce in the chamber, and therefore
yield photoelectrons (or get absorbed) upon first strike. In this case the distribution of
photoelectrons is far from uniform, and a proper calculation requires a detailed integration
of the photon spectrum folded with the geometry of the vacuum chamber. We have not
yet carried out such calculation, and will not consider this case any further in this note.
However, it is clear that the largest power deposition from the electron cloud in the dipole
magnets increases with R, hence our calculation for R∼< 1 represents an upper limit.

3.2 Distribution in position and momentum of the photoelectrons.
Since R∼< 1 we assume that the photoelectrons are generated on the surface of the

elliptical beam screen with distribution

dN

dsdζ
∝
√

x2 + y2 (6)

where x and y are the transverse coordinates of the point of photoemission on the surface
of the beam screen, s is the longitudinal position along the pipe, and ζ is the elliptical
coordinate of the point (x, y), defined by the equations

x = a cos ζ, y = b sin ζ (7)

The distribution (6) implies that the number of photoelectrons emitted per unit beam
screen area is ∝ a/b for (x, y) = (±a, 0) and ∝ b/a for (x, y) = (0,±b). Thus our choice
(6) emphasizes the horizontal “corners” of the ellipse, which seems physically reasonable.

The distribution in energy and angles is assumed of the form

dN

dEdθdφ
∝ θ(E) e−(E−Eph)2/2σ2

ph cos θ (8)

where θ and φ are the polar and azimuthal angles relative to the normal to the surface at
the emission point and the step function θ(E) ensures the positivity of the kinetic energy
E. In most simulations presented here we choose Eph = σph = 5 eV.

3.3 Time structure of the photoelectrons.
As mentioned above, N̄e represents a time-averaged the number of photoelectrons.

The simulation of the electron-cloud effect, on the other hand, requires the spatial and
temporal details of the photoemission process. When the beam traverses a dipole bending
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magnet, the generated photons have the same time structure as the beam. In particular,
if the bunch has a gaussian longitudinal charge density with rms length σz, so does the
pulse of photons generated by this bunch. If the photon reflectivity is specular and if
R ∼ 1, the photon pulse travels approximately together with the proton bunch even
after bouncing several times off the chamber walls. Thus the photoelectrons are produced
concurrently with the bunch as it traverses any given section of the chamber. Since the
photoelectric process is probabilistic, a given photoelectron may experience the full kick
from the bunch if it is generated at the head of the pulse, or a small fraction of the
kick if it is generated at the tail. For a longitudinal gaussian distribution the beam kick
experienced by a photoelectron upon being generated is weighted by the factor

∞∫
tcr

dtλ̂(t) =
1

2

(
1− erf

(
tcr√
2σt

))
(9)

where tcr is the creation time of the photoelectron relative to the instant of passage of the
center of the bunch, λ̂(t) is the normalized longitudinal charge distribution of the bunch
as a function of time t, and σt = σz/c. Of course, these electrons will sample the entire
length of the bunch from successive bunches.

4 Secondary emission process.
The generally-accepted picture of secondary emission [15] is the following: when a

current I0 of electrons strikes the surface of a material, a certain portion Ie is elastically
backscattered off the surface, and the rest penetrates into the material. Some of these
electrons scatter from one or more atoms and are reflected back out (these are the so-
called “rediffused” electrons), yielding a current Ir. The rest of the electrons interact in
an inelastic way with the material and yield a current Its of “true secondary” electrons.

Our complete model of the SEY is presented in Ref. 11. However, for the purpose of
facilitating a comparison with Ref. 10, in this report we mostly neglect the backscattered
and rediffused components of the SEY, and consider only the true secondary yield δts =
Its/I0, i.e., we set δ = δts. We now summarize this simplified model.

The traditional quantities that describe secondary emission are the yield δ(E0, θ0)
and its dependence on the emitted energy, dδ/dE. In these expressions E0 and θ0 are the
incident kinetic energy of the electron and its angle relative to the normal to the surface
at the point of impact, and E is the aggregate energy of the emitted secondaries. The
simulation, however, requires more information than these two average quantities because
it needs to know, on an event-by-event basis, the number of emitted secondary electrons,
their energies and angles. The mathematical objects that contain all the information
relevant to the process are the “most differential” probabilities

Pn ≡
dPn

dE1dΩ1dE2dΩ2 · · · dEndΩn

, n = 1, 2 · · · (10)

for the emission of n electrons. Here Ek and Ωk = (θk, φk) are the kinetic energy and solid
angle of the k-th ejected electron, respectively. Our simulation code POSINST embodies
a model for the Pn’s, described below, that is consistent with measured values of δ and
dδ/dE. Obviously such a model is far from unique.

The probability that n electrons will be emitted with arbitrary energies and direc-
tions for a fixed incident angle and energy, Pn(E0, θ0), is obtained by integrating (10) over
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the entire phase space of the secondary electrons,

Pn(E0, θ0) =
∫

(dE)n(dΩ)nPn (11)

where the symbols (dE)n and (dΩ)n are the n-body volumes of kinetic energy and solid
angle, respectively, (dE)n ≡ dE1dE2 · · · dEn and (dΩ)n ≡ dΩ1dΩ2 · · · dΩn. The Pn’s must
obey the conditions

Pn ≥ 0, n = 0, 1, 2, · · · and
∞∑
n=0

Pn = 1 (12)

where P0 is the probability that the incident electron is absorbed without the emission of
any electrons. The SEY is the average electron multiplicity,

δ(E0, θ0) = 〈n〉 ≡
∞∑
n=1

nPn (13)

and dδ/dE is given by1)

dδ

dE
=
∞∑
n=1

n
∫

(dE)n(dΩ)nPn δ(E − E1 − E2 − · · · − En) (14)

This equation yields δ upon integration over E from 0 to ∞, as it should. Eqs. (11–
14), along with the requirement of energy conservation, provide the basic constraints to
construct the model for the Pn’s.

4.1 Dependence on incident energy and angle.
The energy and angular dependence of δ are usually well fit experimentally by a

scaling function D(x) [15,16],

δ(E0, θ0) = δ̂(θ0)D(E0/Ê(θ0)) (15)

so that all dependence on the surface and incident angle θ0 is contained in δ̂ and Ê. The
scaling function D(x) is defined so that it satisfies the conditions D(1) = 1 and D′(1) = 0,
which are, of course, chosen to ensure that δ reaches a peak value δ̂ at an energy E0 = Ê.

The function D(x) is approximately a universal curve. For our purposes, we have
chosen the simplest form that satisfies the above-mentioned conditions and that allows a
good fit to the data namely

D(x) =
sx

s− 1 + xs
(16)

where the parameter s must be > 1. This function is shown in Fig 2.
Measurements at SLAC show that data for aluminum at normal incidence is well fit

by s = 1.44. The experimental measurements for incidence away from normal [17] both for
aluminum and TiN demand that all three parameters δ̂, Ê and s depend on the incident
angle θ0 [17]. For smooth surfaces, the incident-angle dependence of δ̂ and Ê is usually
well parametrized by a power law of the form δ̂(θ0) ∝ (cos θ0)

−q and Ê(θ0) ∝ (cos θ0)
−r,

where θ0 is measured relative to the normal to the surface [16]. For technical surfaces,

1) Dirac’s δ, appearing in the integrand, should not be confused with the SEY.
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Figure 2: The scaling function D(x), Eq. (16), for s = 1.44.

such as the PEP-II vacuum chamber even after TiN coating [17], we have found that these
parametrizations are inadequate. A better fit is obtained with

s(θ0) = s(0)× (1− 0.18(1− cos θ0)) (17a)

Ê(θ0) = Ê(0)× (1 + 0.7(1− cos θ0)) (17b)

δ̂(θ0) = δ̂(0)× (1 + 0.26(1− cos2 θ0)) (17c)

The numerical constants appearing in Eq. (17), including the powers of cos θ0, are only
approximate, and were obtained from the incident-angle dependence measurements for
an uncoated aluminum sample. We assume here that the same numerical constants will
describe the copper-coated LHC beam screen, for which we also assume Ê(0) = 400 eV and
δ̂(0) = 1.3, although we will present results for other values in the range 0 ≤ δ̂(0) ≤ 1.8.
Figure 3 shows curves of the SEY of copper for the above-mentioned parameters.

4.2 Energy and angle dependence of emitted electrons.
The true secondary electrons emitted from amorphous surfaces have an approximate

cos θ-distribution in angle, which is fairly independent of the incident angle θ0. Thus we
assume the simplest uncorrelated form for Pn,

Pn =
dPn

(dE)n
× cos θ1 cos θ2 · · · cos θn

πn
(18)

where the emission angles θk are measured relative to the normal to the surface at the
collision point. The normalization factor 1/πn ensures that the integral

∫
(dΩ)n over the

hemisphere away from the surface is unity.
Next we make the assumption that, for n ≥ 1, dPn/(dE)n is of the form

dPn
(dE)n

= fn(E1)fn(E2) · · · fn(En) θ(E0 − E1 − E2 − · · · − En) (19)

where the fn’s are the single-electron kinetic energy distributions. This expression implies
that the electrons are emitted almost independently of each other; the only constraint that
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Figure 3: SEY for copper obtained from our model, Eqs. (16) and (17), with
δ̂(0) = 1.3, Ê(0) = 400 eV and s(0) = 1.44.

they must collectively obey, which is enforced by the θ-function, is that their aggregate
energy should not exceed the primary electron energy E0. The explicit form assumed for
fn is

fn(E, E0, θ0) = Fn(E0, θ0) Ep−1e−E/Es , n ≥ 1 (20)

For our simulations we choose p = 2, which appears to be consistent with measurements
of various materials [15,18,19]. For the specific parameter regime of the LHC, there is an
important dependence on the parameter Es, and we shall present results for Es = 5 and
10 eV.

The quantity Fn appearing in fn is related to Pn via the integral

Pn =

∞∫
0

(dE)n fn(E1)fn(E2) · · · fn(En) θ(E0 − E1 − E2 − · · · − En)

=
(Ep

sΓ(p)Fn)
n γ(np, E0/Es)

Γ(np)
(21)

where γ(z, x) is the incomplete gamma function [20]. The final ingredient in the definition
of the model is the connection between Pn and δ. For this we assume a simple Poisson
distribution,

Pn(E0) =
δn

n!
e−δ, n ≥ 1 (22)

which has a mean 〈n〉 = δ, as it should in order for δ to have the required meaning of
being the average number of secondary electrons. The probability P0 that an incident
electron gets absorbed with no electrons generated is determined from Eq. (12),

P0 = 1−
∞∑
n=1

Pn = e−δ (23)
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4.3 Algorithm for the secondary emission process.
With all these ingredients, we can now state the algorithm used by POSINST for

the secondary emission process when an electron hits the chamber wall:

1. Record the point of impact and compute the inward unit vector normal to the
surface, n̂.

2. Record the incident energy E0 and angle θ0 relative to n̂.

3. Compute δ according to Eq. (15), including the angular dependence factors in
Eq. (17).

4. Compute the probabilities Pn for n = 1, 2, · · · , 10 according to Eq. (22) and P0

according to Eq. (23).

5. Generate a random integer m ∈ {0, 1, · · · , 10} with probability distribution
{P0, P1, · · · , P10}. This is the number of secondary electrons emitted.2)

6. If m = 0, the incident electron is absorbed without emission; proceed with the
next electron.

7. If m 6= 0, generate m random polar angles θk ∈ (0, π/2) with probability
distribution cos θ, and m random azimuthal angles φk ∈ (0, 2π) with uniform
probability distribution. These angles determine the directions of the m emitted
electrons relative to the normal at the surface.

8. Generate m random kinetic energies Ek ∈ (0, E0) with probability density
Ep−1e−E/Es subject to the constraint E1 + · · · + Em ≤ E0. These are the chosen
energies for the secondary electrons.

4.4 Energy distribution of secondaries.
It is straightforward to compute dδ/dE from Eq. (14); we obtain

dδ

dE
= θ(E0 − E)

[
1

Es

exp(−δ − E/Es)
∞∑
n=1

δn (E/Es)
np−1

(n− 1)! γ(np, E0/Es)

]
(24)

which is illustrated in Fig. 4. This curve is consistent with measured data except when
E ∼< E0, where the elastically backscattered electrons lead to a peak in dδ/dE.

5 The transverse electric field.
The electric field produced by the beam in an elliptical, perfectly conducting vacuum

chamber is described in detail in Refs. 3 and 11. Here we summarize the expressions and
add one improvement.

5.1 Infinitely thin line of charge.
A relativistic charge moving in a straight line produces an electric field that is purely

transverse. The transverse electric field per unit line-charge density, which has dimensions
of 1/length, is conveniently expressed in complex form,

E = Ex + iEy (25)

Consider an elliptical vacuum chamber made of a perfect conductor with semi-axes
a and b with a > b. Choose the origin of the coordinate system at the center of the ellipse

2) We have never seen more than 9 electrons being generated in a single collision.
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Figure 4: Energy distribution dδ/dE of emitted secondary electrons for a
normally-incident electron with energy E0 = 100 eV. Other parameters are:
δ̂(0) = 1.3, Ê(0) = 400 eV, p = 2, and Es = 5 eV. The backscattered and
rediffused components of the SEY are ignored here.

such that the x axis is along a. The problem is solved in elliptic coordinates (µ, φ), defined
by

x = g cosh µ cos φ
y = g sinh µ sin φ

}
− π < φ ≤ π, 0 ≤ µ <∞ (26)

The curves with constant µ are confocal ellipses and those with constant φ are confocal
hyperbolas, the common foci of both families being located at x = ±g, y = 0. The
solution of Poisson’s equation with perfect-conductor boundary conditions [14] requires
that g be chosen so that the ellipse that defines the vacuum chamber itself belongs to
the family of confocal ellipses. This condition implies that there must be a value µ = µc,
which defines the chamber, for which

a = g cosh µc (27a)

b = g sinh µc (27b)

or, equivalently

g =
√

a2 − b2 (28a)

µc = tanh−1

(
b

a

)
=

1

2
log

(
a + b

a− b

)
(28b)

If the line of charge is located at a point (x0, y0) inside the chamber, the exact
expression for the complex electric field is written

E = Ed + Es (29)
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where the “direct” and “surface” components of the field are given by3)

Ed =
2

z̄ − z̄0

(30a)

Es =
4

g

∞∑
n=1

e−nµc
[
cosh nµ0 cos nφ0

cosh nµc
+ i

sinh nµ0 sin nφ0

sinh nµc

]
sinh nq̄

sinh q̄
(30b)

where z = x + iy = g cosh q with q ≡ µ + iφ, and where µ0 and φ0 are the elliptic
coordinates of (x0, y0), i.e., z0 = x0 + iy0 = g cosh(µ0 + iφ0).

If the line of charge is at the origin, z0 = 0, the expression for Es becomes

Es =
4

g

∞∑
n=1

(−1)ne−2nµc

cosh 2nµc

sinh 2nq̄

sinh q̄
(31)

5.2 Round gaussian charge density.
The field produced by a round gaussian charge distribution centered at the origin

in free space is given by

Er =
2

z̄

(
1− e−|z|

2/2σ2
)

(32)

where σx = σy ≡ σ. In the usual case when the beam is close to the center of the chamber
and its transverse size is small compared with the dimensions of the chamber, σ ¿ a, b,
it is possible to write an extremely accurate expression for the field that satisfies the
perfect-conductor boundary conditions for the elliptical chamber. The formula is simply

Er′ = Er + Es (33)

where Es is given by Eq. (31). This is the formula used in all our simulation results
presented in this note.

To prove that this expression is approximately correct, we first note that it satisfies
the divergence equation exactly for a round gaussian charge distribution, since Es satisfies
the equation with zero source. Now for |z| À σ the field Er approaches 2/z̄ within a
relative accuracy e−(|z|/σ)2/2. Therefore Er′ approaches Eqs. (29–30) with a similar accuracy,
hence Er′ satisfies the boundary conditions at the surface of the ellipse with an accuracy
∼ e−(b/σ)2/2, which evaluates to ' 10−780 for the LHC. This completes the proof.

If the bunch center is at location (x0, y0) away from the origin, Eq. (33) must be
modified by replacing (x, y) → (x − x0, y − y0) in Er and using expression (30b) for Es;
the expression for Er′ remains accurate provided that both |x0| and |y0| are ¿ (a, b).

Finally, we note that Es ¿ Er near the center of the ellipse. To prove this, we note
that, near the origin, Eqs. (31) and (32) yield

Es = −8z̄

g2

∞∑
n=1

ne−2nµc

cosh 2nµc
+O(z̄3) (34a)

Er =
z

σ2
+O(z3) (34b)

This implies that in the region 0 ≤ |z| ∼< σ the ratio of the fields is∣∣∣∣EsEr
∣∣∣∣ ' 16

(
σ

g

)2

e−4µc (35)

3) It should be noted that the n-th term in the summation for the surface field does not represent an
image charge.
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which evaluates to 10−4 for LHC parameters. Hence the surface charges have a minor
effect near the beam, as one should expect.

5.3 Elliptical gaussian charge density.
In other regions of the machine, e.g. in the quadrupole magnets, it may be more

correct to assume an elliptical, rather than round, beam charge distribution. We present
here, for future reference, the approximate formula for the field that takes into account
the elliptic-chamber boundary condition.

If the beam distribution is gaussian with elliptical profile, the previous analysis
carries through provided one replaces Er by the Bassetti-Erskine [21] formula4)

EBE =
2i
√

π

S

[
e−|ξ|

2/2 w (η̄/S)− w (z̄/S)
]

(36)

where S ≡ (2(σ2
x − σ2

y))
1/2, η ≡ σyx/σx + iσxy/σy, ξ ≡ x/σx + iy/σy and w(z) is the

complex error function [20]. Thus the approximate expression for the field in the presence
of an elliptical perfect conductor is

EBE′ = EBE + Es (37)

In this case, however, the error with which this expression satisfies the boundary condition,
though still small, is much larger than in the round-beam case. This is because, for |z| À
σx, σy and σx > σy, Eq. (36) implies

EBE =
2

z̄

(
1 +

σ2
x − σ2

y

z̄2
+O

(
z̄−4

))
(38)

hence EBE′ fails to satisfy the boundary condition by an amount ∼ (σx/b)
2 ∼ 3 × 10−4

rather than by ∼ e−(b/σ)2/2 ' 10−780. Again, if the bunch center is at location (x0, y0)
away from the origin, EBE′ must be modified by replacing (x, y)→ (x−x0, y− y0) in EBE
and using expression (30b) for Es.

5.4 Linearized form.
Since Es is small near the center of the chamber, an approximate expression for the

field can be obtained by linearizing EBE′ inside the 1− σ ellipse, thus

E =


2(ξ − ξ0)

σx + σy
for |ξ − ξ0| ≤ 1

Eqs. (29–30) for |ξ − ξ0| > 1

(39)

where the bunch center is assumed to be at location (x0, y0), and we have defined ξ0 =
x0/σx + iy0/σy. This “patched” field (39) has the advantage of simplicity over EBE′ but
it has the defect of having an unphysical discontinuity5) at the 1− σ ellipse, |ξ − ξ0| = 1.

In previous simulations for the LHC [3] and PEP-II [11] we have used Eq. (39) to
compute the beam kick on the electrons. As discussed in Sec. 10.7, we have carried out
spot checks that show that Eq. (39) yields estimates for the power deposition on the LHC
beam screen that are only ∼ 10% larger than those obtained with Eq. (33).

4) The Bassetti-Erskine formula is usually expressed in terms of Ey + iEx, which is trivially re-expressed,
as we do here, in terms of Ex + iEy.

5) I am indebted to F. Ruggiero for emphasizing this point.
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6 Beam-electron interaction in the impulse approximation.
Let E and B be the electric and magnetic fields produced by the bunch, and let v−

and −e be the velocity and charge of an electron in the cloud. Its equation of motion is,
then,

ṗ = −e
(
E +

v−
c
×B

)
' −eE (40)

where we have neglected the magnetic force on account of the assumption that the electron
is nonrelativistic (just like E, the magnetic field B is also purely transverse, and its
magnitude is comparable to that of E). Thus the momentum change, in the impulse
approximation, is obtained by integrating this equation over time t assuming that the
electron does not move during the bunch passage,

∆p =

∞∫
−∞

dt ṗ = −e2Np

c
F (41)

where we have used the fact that, for a relativistic bunch, the field has the form E =
λ(s−ct)F(x, y), where λ is the longitudinal charge density normalized to the total charge,
and F is a purely transverse vector. In terms of the complex electric field E , Eq. (41) reads

∆px + i∆py = −e2Np

c
E (42)

where e2/c ' 1.44× 10−9 (eV/c)-m.

6.1 Estimate of the largest kick.
From Eq. (32) one finds that the peak value of the electric field from a round

gaussian bunch is E ' z/σ2 and this value is obtained at |z| ' σ. Therefore the largest
kick experienced by an electron is

∆p ' −e2Np

cσ
(43)

Thus, if the electron was initially at rest or moving slowly, and if it remains nonrelativistic
after the kick, its energy change is

∆E =
(∆p)2

2m
' 1

2
mc2

(
Npre

σ

)2

(44)

where re = e2/mc2 ' 2.818 × 10−15 m is the classical radius of the electron. For LHC
parameters we obtain Npre/σ = 1, and hence, in the impulse approximation, the electrons
close to the bunch can become relativistic in a single kick. As discussed in more detail
below, however, the impulse approximation is not reliable for these electrons, and the
energy kick is much smaller owing to bunch length effects [8].

For elliptical gaussian charges, the peak value of the electric field is EBE ' 2ξ/(σx+
σy) and it obtains near the 1 − σ ellipse, |ξ| ' 1. Formulas (43) and (44) remain valid
provided one makes the replacement σ → (σx + σy)/2
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6.2 Estimate of the kicks received by electrons near the chamber wall.
If an electron is close to the wall of the chamber, we can sensibly represent the bunch

by a point-like charge, and we can then estimate the field from Eq. (31). We look only at
the “corners”of the ellipse (x, y) = (a, 0), where (µ, φ) = (µc, 0), and (x, y) = (0, b), where
(µ, φ) = (µc, π/2). The parameter ε defined by

ε ≡ e−2µc =
a− b

a + b
(45)

has the value ε = 0.1 in our elliptical-shape model of the beam screen for the LHC.
Therefore we can sensibly keep only the first term in the series in Eq. (31) and we obtain

Ey(x = 0, y = b) ' 2

b
+

8ε

g

sinh µc
cosh 2µc

(46a)

Ex(x = a, y = 0) ' 2

a
− 8ε

g

cosh µc
cosh 2µc

(46b)

Here the first term (2/a or 2/b) is the direct field, and the second is the contribution from
the surface charge (notice the sign difference in the two). The corresponding numerical
values are

Ey(x = 0, y = b) ' 1.11 + 0.18 = 1.29 cm−1 (47a)

Ex(x = a, y = 0) ' 0.91− 0.22 = 0.69 cm−1 (47b)

so that the surface charges have about a ±20% effect on the field.
In the impulse approximation, the corresponding energy kick received by an electron

at rest at either of these two corners is

∆E(x = 0, y = b) ' 380 eV (48a)

∆E(x = a, y = 0) ' 109 eV (48b)

and the corresponding velocity changes are

∆vy(x = 0, y = b) ' 1.2 cm/ns (49a)

∆vx(x = a, y = 0) ' 0.63 cm/ns (49b)

Since the bunch spacing is ' 25 ns, these numbers imply that, in the absence of a magnetic
field, an electron at the wall that is kicked by a bunch will reach the opposite side of the
chamber long before the next bunch comes by. For a strong vertical magnetic field, this
conclusion is true only for the vertical motion.

One might think that this would imply that all electrons created by the photoelectric
process reach the opposite wall almost instantly upon the passage of a bunch. This is not
quite true for two reasons: (a) most electrons receive a weaker kick on account of the
time-of-creation modulating factor (9), and (b): bunch length effects can substantially
reduce the energy transfer from the bunch to an electron due to transverse oscillations of
the electron near the bunch during the bunch passage [8].

7 Bunch length effects.
7.1 Criterion for the validity of the impulse approximation.

The impulse approximation used in Eq. (41) is valid provided that the forces act
on a time scale so short that the electron remains essentially at rest during this time. A
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practical criterion for the validity of this approximation in the absence of a magnetic field
can be found as follows: Consider an electron at rest, or moving sufficiently slowly, at a
distance r from the beam, where r À σx, σy. Neglecting surface charges, the momentum
kick is given by Eq. (41), namely

∆p ' −e2Np

c

2

r
(50)

For a weak enough kick the electron remains nonrelativistic, and the corresponding ve-
locity change is ∆v = ∆p/m. The characteristic length of time during which the field
acts on the electron is σt, the rms bunch length in units of time. During this time the
electron moves a distance ∆r = ∆vσt. Then the criterion for the validity of the impulse
approximation is ∆r ¿ r, or

2e2Npσt
mcr

¿ r (51)

Using σt = σz/c the criterion is written

2Np
reσz
r2
¿ 1 (52)

This criterion can be turned around to define a radius ri that roughly defines the transverse
region of validity of the impulse approximation. For this we choose 0.1 to be a practical
measure of smallness in Eq. (52) so that

ri =
√

20Npreσz (53)

The impulse approximation is approximately valid for electrons that are at distances
from the bunch larger than ri at the time the bunch passes. For nominal LHC parameters,
we obtain ri = 2 cm, which is comparable to the radius of the beam screen. Therefore,
the impulse approximation is not valid for any electrons, except perhaps those that are
very close to the beam screen.

7.2 Slicing the bunch.
As in beam-beam simulations, bunch length effects are taken into account by a

“thick-lens” element, which is implemented by a succession of a certain number Nk of
weighted thin-lens (impulse) kicks separated by free-particle drifts (in the presence of a
dipole magnetic field the free-particle drift is replaced by the appropriate helical motion).

We assume that the longitudinal charge distribution of the bunch is described by a
density λ̂(z) where the caret is meant to emphasize unit normalization. For the purposes of
our simulations, we replace this density by a weighted superposition of Nk delta functions,

λ̂(z)→ λ̂s(z) ≡
∑̀
k=−`

wkδ(z − zk) (54)

where Nk ≡ 2` + 1 (we assume, for simplicity, that Nk is an odd integer). Each delta
function gives rise to a kick at a location zk weighted by wk; these locations and weights
must be determined according to a certain algorithm. The symmetry λ̂(−z) = λ̂(z) implies
that the kick locations and weights must obey the basic constraints

z−k = −zk and w−k = wk (55)
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In addition, we require that the accumulated effects of the kicks should be the same as in
the original distribution, i.e.,

∫
dzλ̂(z) =

∫
dzλ̂s(z) = 1, which implies

∑̀
k=−`

wk = 1 (56)

For the impulse approximation, Nk = 1, there is a single kick at the center of the
bunch, namely

z0 = 0, w0 = 1 (Nk = 1), (57)

but for Nk > 1 there is, of course, an infinite number of possible algorithms to decide the
wk’s and zk’s consistent with Eqs. (55).

In an ideal calculation one would use an infinite number of kicks. In practice, of
course, one wants to use as few as possible for a given desired computational accuracy.
Each algorithm has advantages and drawbacks regarding computational efficiency and
convergence rate as Nk → ∞. All results presented in this note were obtained with the
“equal-spacing” algorithm, described below. We have verified that the “equal-weight”
algorithm [22] yields qualitatively similar results. The equal-spacing algorithm, however,
is advantageous in the case of a dipole magnetic field because, owing to the even spacing,
the computer code section for the drifts between kicks is simpler and faster than in the
equal-weight algorithm.

In the equal-spacing algorithm the kicks are chosen to be equally spaced and the
weights are proportional to the density at zk, namely

zk = k∆z

wk =
λ̂(zk)∑̀

m=−`
λ̂(zm)


k = 0, ±1, · · · , ±` (Nk ≥ 3) (58)

where ∆z is the spacing. In our simulations we have considered only a longitudinal gaus-
sian distribution, λ̂(z) = e−z

2/2σ2
z/
√

2πσz, and we have chosen, after some experimenta-
tion,

∆z =
3σz

Nk − 1
(59)

corresponding to a distance 3σz between the first and last kicks. This is our algorithm of
choice for the LHC applications.

Results for the convergence rate as a function of the number of kicks for a dipole
bending magnet and for a field-free region are shown in Sec. 10.2. We can see that a
gaussian bunch is well approximated by 51 kicks evenly-spaced by ∆z as specified by
Eq. (59).

7.3 The long-bunch mapping.
In the simulation code POSINST each electron is represented by its six-dimensional

phase space coordinates plus a time variable. This latter represents how much time there
is left till the next bunch comes by. Successive physical operations, such as beam kick,
drift, space-charge force, and utilities such as binning and averaging, act on the phase
space at specific times and “debit” the time variable, if appropriate. Thus the basic unit
of time in the code is the bunch interval sB/c. This is a well-defined concept in the
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impulse approximation in which the bunches have effectively zero length. When bunch
length effects are taken into account, however, there is no longer a sharply defined time
step, even though sB/c is still the center-to-center bunch interval.

A convenient way to recover the basic time step sB/c (and thus the basic structure
of the code) is to represent the action of the bunch by an instantaneous mapping which
changes both the coordinates and the momenta of the electron. This can be implemented
easily if one neglects the action of the space-charge forces during the passage of a given
bunch, which is a reasonable approximation for the LHC.

For the sake of illustration, consider the case of a bunch divided up into 2` slices
according to the equal-spacing algorithm, i.e., there are Nk = 2`+1 kicks evenly-spaced by
a time step ∆t = 3σz/2`c. Let X(t) be the 6-dimensional phase space of a given electron
at time t and let t0 be the instant of passage of the center of the bunch. Then the action
of the bunch is represented by

X(t0 + `∆t) =

K(t0 + `∆t)D(∆t)K(t0 + (`− 1)∆t)D(∆t) · · ·D(∆t)K(t0 − `∆t)X(t0 − `∆t) (60)

where K(t + k∆t) represents the action of kick k weighted by wk,

K(t + k∆t) : px + ipy → px + ipy −
e2Np

c
wk E (61)

and D(∆t) represents the drift between successive kicks.6) By multiplying Eq. (60) from
the left by D(−`∆t) and inserting 1 = D(−`∆t)D(`∆t) just in front of X(t0 − `∆t) one
can write

Xf (t0) = K(t0)Xi(t0) (62)

where

K(t0) = D(−`∆t)K(t0 + `∆t)D(∆t)

×K(t0 + (`− 1)∆t)D(∆t) · · ·D(∆t)K(t0 − `∆t)D(−`∆t) (63)

represents the long-bunch mapping. The initial and final phase space vectors Xi(t0) and
Xf (t0) are the pure-drift-transforms of the physical initial and final phase space vectors
X(t0 − `∆t) and X(t0 + `∆t), respectively. It is important to note that the only physical
elements that are allowed to act on the electron between t0 − `∆t and t0 + `∆t are drifts
and kicks. In particular, if the electron hits the wall of the chamber during this interval
one cannot use this map without some modification.

8 Simulation procedure.
Our computer program POSINST simulates the dynamics of the electron cloud

following the same general procedure as in Ref. 23. The code simulates the cloud within
one single specified section of the ring.

One of the basic inputs to the simulation is the average number of photoelectrons per
bunch passage, N̄e, given by Eq. (5). In the simulation we represent the N̄e photoelectrons
by a fixed number of macro-particles, Nphel, which are generated at every bunch passage
at the walls of the section. For R∼< 1, these are distributed in position, angle and energy

6) In a field-free region D(∆t) represents straight-line motion during a time ∆t; in a dipole magnet,
D(∆t) represents helical motion during a time interval ∆t.
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as described in Sec. 3. These electrons are then kicked by successive bunches as they
traverse the section. The motion of the electrons is fully 3-dimensional. In between kicks,
the motion of any given electron is computed exactly (a straight line at constant velocity
in a field-free section, or a helical motion in a dipole field), and from this trajectory we
obtain the instant and the location of the collision point of the electron with the wall.
At this point, the electron is either absorbed or creates secondary electrons according to
the SEY model described in Sec. 4. Space-charge effects are included in the motion of the
electrons in the cloud, as explained in Sec. 8.2.

The code can also compute the effective dipole wake function due to the electron
cloud and from it the coupled-bunch instability growth rate [2, 3]. In this note, however,
we only focus on the heat deposition from the electrons on the beam screen and related
quantities.

8.1 Macroparticle-to-particle factor.
In practice, one cannot simulate the electron cloud with a realistic number of par-

ticles, which is expected to be in the range 108 − 1010 per section, since this number is
too large for present-day computers. Thus one resorts to simulating a much smaller num-
ber of representative particles, usually referred to as “macroparticles.” In order to obtain
quantitative results from the simulation that can be compared with a real machine, one
must scale all electron-density-dependent quantities obtained from the simulation by a
density factor F , which can also be interpreted as the macroparticle-to-particle charge
ratio, given by

F =
number of electrons in reality

number of electrons in the simulation
(64)

Both the numerator and denominator in Eq. (64) are a priori unknown, so we need
a more convenient expression for F . Since the basic input value to our simulation is the
number of macro-photoelectrons per bunch passage, Nphel, we can express F as

F =
N̄e

Nphel

(65)

The numerator in this formula is the total number of real photoelectrons created in the
section being simulated during a time interval equal to a bunch spacing, sB/c, while the
denominator is the corresponding number of macro-photoelectrons, each carrying a charge
eF . Eqs. (65) and (64) are equivalent because the number of electrons in existence in the
simulation (and in reality) is directly proportional to the number of photoelectrons.

8.2 Space-charge forces.
In order to compute the space-charge forces from the electrons on themselves, we

make the simplifying assumption that the electron density is, on average, longitudinally
uniform so that the field calculation becomes effectively two-dimensional. Let’s say we are
simulating one section of length L, i.e., one dipole magnet of length L, or one field-free
section of length L. The equation to solve is

∇·E = 4πρe (66)

where E is the space-charge electric field and ρe is the electron charge density,

ρe(x, y, s) = −e
∑
j

δ(2)(x− xj)δ(s− sj) (67)
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where (x, y, s) ≡ (x, s) is the observation point, and (xj, sj) is the location of the j-th
electron (x and xj represent here the two-component transverse vectors). Owing to the
assumption of longitudinal uniformity of ρe, the average electric field must be of the form

E = (Ex(x, y), Ey(x, y), 0) (68)

so that, integrating Eq. (66) over the longitudinal coordinate s over the entire section
length L yields the two-dimensional equation

∇⊥·E⊥ = − e

L

∑
j

δ(2)(x− xj) (69)

where E⊥ ≡ (Ex, Ey). It follows from the discussion in Sec. 5 that the solution of this
equation, subject to the elliptical perfect-conductor boundary, is given in complex form
by the superposition

Ex + iEy = − e

L

∑
j

(Ed + Es)j (70)

where Ed and Es are given by Eqs. (30a) and (30b) with the replacement z0 → zj = xj+iyj.
The momentum kick received by a given electron during a time interval ∆t that

is short on the time scale of macroscopic changes in ρe is obtained by integrating the
equation ṗ = −eE, yielding

∆px + i∆py = G
∑
j

(Ed + Es)j (71)

where the space-charge kick factor is G = e2∆t/L. In our simulations we divide the time
interval between bunches, sB/c, into an integral number Ks of steps (typically Ks =
4− 16), and apply the space-charge kick (71) at each step. Thus ∆t = sB/cKs, and

G =
e2

c

FsB
LKs

(72)

where we have included the superparticle charge factor F , Eq. (65), in order to account
for the fact that we are simulating macroparticles rather than true electrons.

Eq. (71) represents an “N2 algorithm” for the space-charge kick, since ∆px + i∆py
has to be computed for all the electrons in the cloud. Since this computation can be
prohibitively CPU-intensive, we have resorted to a grid method to speed it up at the
expense of some accuracy. For this we define a rectangular grid in (x, y) space with cell
size ∆x×∆y. We first compute the transverse electric field E at all the grid points k by
simply superposing the fields from all the electrons,

Ek =
∑
j

(Ed + Es)j (73)

and then we compute the kick ∆px + i∆py on each electron by an area-weighted average
of the fields at the four grid points nearest the electron [24]. Typically we use a grid
cell ∆x ×∆y = 5 × 5 mm, with spot checks down to 1 × 1 mm. We typically make the
approximation of computing the grid fields only once per bunch interval, immediately
after the bunch passage, and then we apply the space-charge kick Ks times. We have
carried out spot-checks in which we compute the space-charge fields Ks times per bunch
interval sB/c, i.e., at every step, as discussed in Sec. 10.8.
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9 Results.
Table 2 collects most of the parameter values used in our simulations, already men-

tioned in the text. The column labeled “reference case” represents what we believe are
sensible parameter values whose purpose is to provide a point of departure for compar-
isons. Some of these parameters correspond to initial measurements of surface properties
of the beam screen at the EPA [26].

Table 2: Parameter values and simulation conditions.

range of values explored reference case
Beam
Particles per bunch, Np 1.05× 1011 1.05× 1011

Bunch spacing, sB [m] 7.48 7.48
RMS transverse beam size, σ [mm] (shape) 0.3 (round gaussian) 0.3 (round gaussian)
RMS bunch length, σz [cm] (shape) 7.7 (gaussian) 7.7 (gaussian)
Photoemission
Photon reflectivity, R ∼ 1 ∼ 1
Quantum efficiency, Y ′ 0.02–1 0.2
Photons per proton, Nγ/p(Eγ ≥ 4 eV) 0.18 0.18
Peak energy of distribution, Eph [eV] 5 or 10 5
Energy width of distribution, σph [eV] 5 or 10 5
Angular distribution cos θ, uncorrelated cos θ, uncorrelated
Secondary emission
Peak SEY at normal incidence, δ̂(0) 0–1.8 1.3
Electron energy at SEY peak, Ê(0) [eV] 400 400
Angular dependence of SEY Eqs. (17) Eqs. (17)
Emitted electron parameter p 2 2
Emitted electron energy width parameter, Es [eV] 5 or 10 5
Angular distribution of emitted electrons cos θ, uncorrelated cos θ, uncorrelated
Elastic and rediffused components included? yes or no no
Simulation method
Macro-photoelectrons per bunch, Nphel 100 100
Steps per bunch interval, Ks 1− 16 4
Space-charge grid, ∆x×∆y [mm] 1× 1− 5× 5 5× 5
Space-charge computation frequency during sB/c 1−Ks times 1 time
Kicks per bunch, Nk 1− 101 51
Distance between outermost kicks 3σz 3σz

9.1 Power deposition in the arc dipole magnets.
Figure 5 shows the power deposition per unit length in the dipole bending magnets

as a function of Y ′ for 4 values of δ̂. One can see that when δ̂ exceeds a certain threshold,
the power deposition has a nonvanishing limit when Y ′ → 0. This implies that, if the
SEY is high enough, there is substantial power deposition due to a self-sustaining beam-
induced multipacting effect [25]. In this case, the phenomenon may start from just one
seed electron which may originate from ionization of the residual gas.
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9.2 Dependence on δ̂.
Figure 6 shows the power deposition per unit length in the dipole bending magnets

as a function of δ̂ for Y ′ = 0.2. There is a clear threshold at δ̂ ' 1.4 beyond which there
is a qualitative increase in the power deposition, as discussed in the previous section.

The notion of a critical value for δ̂ has been discussed in Ref. 9 and studied more
systematically in Ref. 10. The concept can be extended by noting that the ECE exhibits
phases that are qualitatively analogous to those of a ferromagnet with the correspondence
given in Table 3. It is possible that the phase structure of the ECE is more complicated
than that of a simple ferromagnet; we shall map out the phase diagram in parameter
space in a separate note.

Table 3: Ferromagnet analog of the ECE.

Electron Cloud Ferromagnet

peak value of SEY, δ̂ ←→ inverse temperature, β
quantum efficiency, Y ′ ←→ applied magnetic field, H

power deposition ←→ magnetization, M

9.3 Power deposition in the field-free regions in the arcs.
Figure 7 shows the power deposition calculated in the field-free regions in the arcs.

Comparing with Fig. 5, one sees that the power deposition is 2–6 times larger than in the
dipole magnets.

10 Discussion and conclusions.
10.1 General comments.

Our result for the reference case show a power deposition of ∼ 0.75 W/m for the
dipole bending magnets and ∼ 4.1 W/m for the field-free regions in the arcs. The power
deposition scales roughly linearly with the quantum efficiency Y ′ provided the peak value
of the SEY, δ̂, is below a critical value ∼ 1.4. If δ̂ exceeds this critical value there is
substantial power deposition due to a self-sustaining beam-induced multipacting condi-
tion. As evidenced by the results presented in the following sections, there is a strong
sensitivity to the characteristic energy Es of the emitted secondary electrons in the range
Es = 5− 10 eV.

Our results are in good agreement with those in Ref. 10 for those cases in which a
direct comparison is possible. Relatively small numerical discrepancies can be attributed
to differences in the detailed approximations and physical models used by the codes. For
example, one such difference is in the energy distribution of the secondary electrons: while
we assume dδ/dE ∝ E exp(−E/Es), the model used in Ref. 10 is of the form dδ/dE ∝
exp(−(E/Es)

2). These two models are probably equivalent on the level of precision with
which these distributions are known on the scale of a few eV, and therefore the spread in
the results from the two codes must be regarded as representative of the uncertainties at
this stage of the calculation.

This agreement strengthens our confidence in the methods used to simulate the
ECE, and re-emphasizes the relevance of low-energy secondary emission parameters for
the power deposition in the LHC beam screen. Since these parameters are used as input
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to our computer program, it is vital to pin them down in order to obtain a more reliable
estimate of the power deposition from our simulations.

In order to test the sensitivity of our calculation to different physical parameters
and simulation conditions, we shall now present the estimates obtained for the power
deposition by changing one or a few parameters at a time away from the reference case.

10.2 Convergence as a function of the number of kicks.
Fig. 8 shows the calculated power deposition by the electrons as they hit the walls

of the chamber. Except for Nk, all parameters correspond to the reference case. It can
be seen that adequate convergence is achieved for Nk = 51. All other results presented in
this note assume this value for Nk.

10.3 Dependence on Eph and σph.
If the photoemission parameters Eph and σph are both set to 10 eV instead of 5 eV

while all others are kept fixed at their reference values, the power deposition in the dipole
magnets increases from ∼ 0.75 W/m to ∼ 0.86 W/m. This relatively mild sensitivity
is presumably due to bunch length effects, particularly the time-of-creation modulating
factor (9).

10.4 Dependence on Es.
An important parameter is the energy an electron needs in order to cross the cham-

ber in one bunch spacing. If an electron is created at rest at x = 0, y = b, it needs a speed
vy = 2bc/sB in order to cross the chamber, and the corresponding energy is

Emin = 2mc2

(
b

sB

)2

= 6 eV (74)

If an electron is created at the surface of the screen with an energy lower than this,
it may be strongly kicked by the next bunch that comes by, resulting in a substantial
collision energy at the walls. Of course, in our model the electrons are created with a
continuous energy-angle distribution, so there is no sharp energy boundary that separates
the slow electrons from the fast. Nevertheless, the energy scale ∼ 6 eV is important [12].
To test the sensitivity of the power deposition to low-energy secondary electrons we have
run a simulation in which the energy scale parameter Es is increased from 5 to 10 eV.
The results for the dipole bending magnets is shown in Fig. 9. One can see that the power
deposition is down by roughly 50% with respect to the case in which Es = 5 eV, shown in
Fig. 5. One can also see that there is no self-sustaining beam-induced multipacting effect
up to δ̂ = 1.8. Presumably, such an effect occurs at larger values of δ̂.

10.5 Backscattered and rediffused electrons.
If the elastically backscattered and rediffused components of the SEY are included,

the spectrum dδ/dE acquires a high-energy peak at E ∼< E0 from the former, and a fairly
constant, but small, contribution in the whole range 0∼< E < E0 from the latter [11], as
seen in Fig. 10. Perhaps more importantly, these components add an excess of secondary
electrons for E0 ∼< 5 eV, as shown in Fig. 11. These extra low-energy electrons have an
effect on the power deposition similar to that discussed in Sec. 10.4. A spot-check for
the dipole magnets for the reference case shows that the power deposition increases from
∼ 0.75 W/m to ∼ 1.9 W/m when the elastic and rediffused components of the SEY are
included.
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10.6 Dependence on Ks.
A spot-check indicates that the number of steps Ks between bunches does not

have a dramatic effect on our estimates. For the reference case the estimate of the power
deposition in the dipole magnets increases from ∼ 0.75 W/m to ∼ 0.87 W/m when Ks

is increased from 4 to 16. A similar calculation for the field-free sections shows that the
power deposition increases from ∼ 4.1 W/m to ∼ 4.2 W/m.

10.7 Linearized vs. smooth E-field.
As mentioned in Sec. 5.4, our preliminary estimates [3] were obtained with a lin-

earized form of the electric field given by Eq. (39). A spot-check indicates that this ap-
proximation does not have a dramatic effect: for the reference case the estimate of the
power deposition in the dipole magnets increases from ∼ 0.75 W/m, obtained with the
smooth field (33), to ∼ 0.85 W/m obtained with the linearized field (39). This result im-
plies that this approximation, by itself, did not entail a significant error in our preliminary
estimates.

For an elliptical gaussian bunch the linearized form (39) represents a significant
savings of computer time over the modified Bassetti-Erskine formula (37). For a round
gaussian bunch, however, the time savings is marginal. For this reason, we have not used
(39) in all other results presented in this note.

10.8 Space-charge field computed at every step.
In all simulation results discussed above we have simplified the calculation by com-

puting the space-charge fields only once per bunch interval, immediately following the
passage of a bunch, and then applying the kick from these fields Ks times before the
next bunch comes by. The purpose of this approximation, of course, is to save computer
time. A more physical description requires the recomputation of the space-charge fields
Ks times, i.e., once per time step. A spot check for Ks = 4 indicates that the short-cut
approximation does not have a dramatic effect on our estimates: for the reference case,
the estimate of the power deposition in the dipole magnets increases from ∼ 0.75 W/m,
obtained with the short-cut approximation, to ∼ 0.82 W/m obtained from a recomputa-
tion of the space-charge fields Ks times. For higher values of Y ′ and/or δ̂, however, there
is a larger difference between the two approximations owing to the higher electron-cloud
density [10].

10.9 Finer space-charge grid.
In all results presented above the space-charge grid size was set to 5 × 5 mm. If

we set it to 1 × 1 mm and we use Ks = 16 steps with the space-charge fields computed
at every step, the results also do not show a dramatic change. For the reference case the
estimate of the power deposition in the dipole magnets increases from ∼ 0.75 W/m to
∼ 0.83 W/m.
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Figure 5: Power deposition per unit length in the dipole bending magnets. All
parameters correspond to the reference case except for Y ′ and δ̂, whose values
are labeled.
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Figure 6: Power deposition per unit length in the dipole bending magnets as
a function of δ̂ for fixed Y ′ = 0.2. All other parameters correspond to the
reference case.
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Figure 7: Power deposition per unit length in the field-free regions in the arcs.
All parameters correspond to the reference case except for Y ′ and δ̂, whose
values are labeled.
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Figure 8: Convergence rate of the power deposition as a function of the num-
ber of kicks. Top: field-free section. Bottom: dipole bending magnet. In this
latter case, the isolated point on the graph for 1 kick, labeled “nk=1, modu-
lated,” represents the result of using the impulse approximation modified by
a cyclotron phase factor, as described in Sec. 6 of Ref. 3.
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Figure 10: Energy distribution dδ/dE of emitted secondary electrons for a
normally-incident electron with energy E0 = 100 eV, including the elastic and
rediffused components. Other parameters are the same as in Fig. 4, with which
this figure should be compared.
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Figure 11: SEY for copper, Eqs. (16) and (17), including the elastics and
rediffused components, whose parameters are described in Ref. 11. Other pa-
rameters are the same as those in Fig. 3. Comparing with this latter case, one
sees an excess of electrons at low values of E0.
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