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es of Strong-Strong Beam-Beam SimulationJi Qiang, Miguel A. Furman, and Robert D. RyneLawren
e Berkeley National Laboratory, Berkeley, CA 94720, USAWolfram Fis
herBrookhaven National Laboratory, Upton, New York 11973, USAKazuhito OhmiHigh Energy A

elerator Resear
h Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, JapanIn this paper, we report on re
ent advan
es in strong-strong beam-beam sim-ulation. Numeri
al methods used in the 
al
ulation of the beam-beam for
esare reviewed. A new 
omputational method to solve the Poisson equation onnonuniform grid is presented. This method redu
es the 
omputational 
ost by ahalf 
ompared with the standard FFT based method on uniform grid. It is alsomore a

urate than the standard method for a 
olliding beam with low trans-verse aspe
t ratio. In appli
ations, we present the study of 
oherent modes withmulti-bun
h, multi-
ollision beam-beam intera
tions at RHIC. We also presentthe strong-strong simulation of the luminosity evolution at KEKB with and with-out �nite 
rossing angle. I. INTRODUCTIONThe beam-beam intera
tion puts a strong limit on the luminosity of the high energy storagering 
olliders. At the intera
tion points, the ele
tromagneti
 �elds generated by one beam fo
usor defo
us the opposite beam. This 
an 
ause beam blowup and a redu
tion of luminosity. Ana

urate simulation of the beam-beam intera
tion is needed to help optimize the luminosity in highenergy 
olliders. In this 
ase, the self-
onsistent strong-strong beam-beam simulation provides aninvaluable tool for the study of the 
olliding beams.In the strong-strong beam-beam simulation, a number of simulation parti
les (ma
roparti
les)are used with the same 
harge-to-mass ratio as the real parti
les. Outside the intera
tion region,the ma
roparti
les are transported through the simulated latti
e using transfer maps asso
iatedwith external elements, radiation damping, and quantum ex
itation. At the intera
tion point, theele
tromagneti
 �elds from the beams are 
al
ulated and applied to the parti
les of the opposingbeam.The soft Gaussian approximation is sometimes used to obtain the ele
tromagneti
 �elds of thebeams at the 
ollision point [1{3℄. While this approximation has the advantage of 
omputationalspeed, it is not self-
onsistent be
ause it assumes a Gaussian distribution for the ma
roparti
leseven when the a
tual distribution might di�er substantially from the Gaussian shape. To take intoa

ount the e�e
ts of the beam distribution self-
onsistently, one has to solve the Poisson equa-tion numeri
ally during ea
h 
ollision for the a
tual ma
roparti
le distribution at that instant. Anumber of methods have been used to solve the Poisson equation. The �ve-point �nite di�eren
emethod with Fourier analysis and 
y
li
 redu
tion (FACR) has been used by Krishnagopal [4℄ andCai et al. [5℄. This method solves the Possion equation eÆ
iently with �nite domain boundary
onditions. For the open boundary 
onditions, whi
h are appropriate in typi
al beam-beam sim-ulations, the method requires �nding an e�e
tive boundary 
ondition on the problem boundary;this 
an be 
omputationally expensive. In addition, this method is not eÆ
ient to handle the 
asewith two widely separated beams, where the domain of the sour
e parti
les (parti
le domain) andthe domain of the ele
tri
 �eld (�eld domain) are di�erent. Another method based on the fast
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2multipole expansion has been used by Herr et al. [6℄ to solve the Poisson equation. In this method,the 
omputational 
ost s
ales linearly with the number of parti
les or with the number of totalmesh points for the open boundary 
ondition. The eÆ
ien
y of this method is independent of thedistribution of the sour
e parti
les and the �eld domain, whi
h makes it suitable to handle thesituation with two separated beams. However, this method is an approximate algorithm in thesense that the a

ura
y of the expansion depends on the radius of 
onvergen
e. The 
omputationalspeed depends on the number of polynomials required in the multipole expansion.The widely used method to solve the Poisson equation in beam-beam simulations is the Greenfun
tion method with fast Fourier transform (FFT) on uniform grid. This method uses an FFT to
al
ulate the 
y
li
 summation on a doubled 
omputational grid [7{10℄. The 
omputational 
osts
ales as N2 log(N), where N is the number of grid points in one dire
tion. By de�ning a newshifted integrated Green fun
tion, this method 
an handle the separated beams, and beams withlarge aspe
t ratio.During the beam-beam intera
tion, when the bun
h length is large 
ompared with the betafun
tion value or the beam-beam for
es are strong, �nite bun
h length e�e
ts are not negligible.In this 
ase, a multiple sli
e model has to be used. The 
omputational 
ost s
ales as the square ofthe number of sli
es. For a hadron 
ollider with small radiation damping, it is required to tra
kthe beams for many millions of turns to study the dynami
s on the time s
ale of the lifetime of thebeams. To study the beam-beam intera
tion fully self-
onsistently for both beams (i.e. a strong-strong formulation), and to in
lude all the physi
al pro
esses of long range o�-
entroid intera
tions,�nite beam bun
h length e�e
ts, and 
rossing angle 
ollisions, requires 
omputational resour
es farbeyond the 
apability of 
urrent serial 
omputers. A parallel beam-beam simulation 
ode, Beam-Beam3D, with both weak-strong and strong-strong 
apabilities, that 
an simulate these physi
alpro
esses a

urately using high performan
e 
omputers has been developed at Lawren
e BerkeleyNational Laboratory [12℄. In this paper, we present re
ent advan
es in the numeri
al method to
al
ulate the beam-beam for
es and in appli
ations to the studies of beam-beam intera
tions atRHIC and KEKB.The organization of the paper is as follows: The 
omputational methods are des
ribed in Se
tion2. Appli
ations to the studies of beam-beam intera
tions at RHIC and KEKB are given in Se
tion3. We summarize our results in Se
tion 4.II. COMPUTATIONAL METHODSIn strong-strong beam-beam simulation, the ele
tri
 �elds generated by the opposite movingbeam 
an be obtained from the solution of Poisson's equation. In Cartesian 
oordinate system,the solution of Poisson's equation 
an be written as�(x; y) = Z G(x; �x; y; �y)�(�x; �y) d�xd�y (1)where G is the Green's fun
tion, � is the 
harge density, and (x; y) represent the 
oordinates inthe plane perpendi
ular to the dire
tion of motion of the beam. For the 
ase of transverse openboundary 
onditions, the Green's fun
tion is given by:G(x; �x; y; �y) = �12 ln((x� �x)2 + (y � �y)2) (2)Now 
onsider a simulation of an open system where the 
omputational domain 
ontaining theparti
les has a range of (0; Lx) and (0; Ly), and where ea
h dimension has been dis
retized using



3Nx and Ny points, the ele
tri
 potentials on the grid 
an be approximated as�(xi; yj) = hxhy NxXi0=1 NyXj0=1G(xi � xi0 ; yi � yj0)�(xi0 ; yj0) (3)where xi = (i� 1)hx and yj = (j � 1)hy . This 
onvolution 
an be repla
ed by a 
y
li
 
onvolutionexpression in a double-gridded 
omputational domain. The 
y
li
 
onvolution 
an be 
omputedeÆ
iently using an FFT as des
ribed by Ho
kney and Eastwood [13℄.The method des
ribed above involves use of the FFT on a uniform 
omputational grid. Inhigh energy 
olliders, the 
olliding beams normally have a non-uniform transverse 
harge densitydistribution. A nonuniform grid will help resolve the 
harge density distribution more eÆ
iently.To use a nonuniform grid, we have transformed the 
harge density distribution from the Cartesian
oordinates (x; y) into a 
ylindri
al 
oordinates (r; �). Then, we de�ne another transform betweenradial r and a new variable s as: s = 1k1 log( rk2 ) (4)where the 
onstants k1 and k2 
ontrol the s
ale and the rate of the fun
tion variation between rand s. Using a uniform grid along s will generate a nonuniform grid along r sin
e dr = k1k2rds.For a uniform 
omputational grid in (s; �) 
oordinates, we 
an use the FFT based method to
al
ulate the 
onvolution for ele
tri
 potential. A similar transform has been used in 
al
ulationof the gravitational potential in a disk galaxy system [14℄. The new Green fun
tion in the (s; �)
oordinate is: G(s; �) = �12 log(e2k1s � 2ek1s 
os(�) + 1) (5)In the (s; �) 
oordinates, both the Green's fun
tion and the 
harge density distribution are periodi
fun
tions of �. Hen
e, we do not need to double the 
omputational domain along � to use theHo
key's algorithm. This redu
es the 
omputational 
ost and the storage by a fa
tor of two
ompared with the standard FFT based Green method on uniform Cartesian 
oordinate.As an example of the above algorithm, we have 
omputed the radial ele
tri
 �eld distributiongenerated by a round beam with a Gaussian density distribution. The left plot of Fig. 1 showsthe analyti
al solution of the radial ele
tri
 �eld Er as a fun
tion of radial distan
e r. The rightplot of Fig. 1 shows the absolute error of Er as a fun
tion of r using the nonuniform grid Greenfun
tion method and the standard uniform grid Green fun
tion method. It 
an be seen thatusing the nonuniform grid Green fun
tion method, the numeri
al error of Er is about half of thatusing the uniform grid Green fun
tion method. In this example, the transverse aspe
t ratio of the
olliding beam is one. This is true for most hadron 
ollider where radiation damping is negligible.For ele
tron-positron 
olliders su
h as KEKB and PEPII, the 
olliding beam 
an have a very largetransverse aspe
t ratio. To test the appli
ability of the above algorithm, we have also 
al
ulated theele
tri
 �eld for a Gaussian 
harge density distribution with an aspe
t ratio of 30. The relative errorof Ex on the x axis is given in Fig. 2 together with that 
al
ulated from using the integrated Greenfun
tion method on uniform grid. Here, three relative errors of Ex from using the nonuniform gridGreen fun
tion method on a 
omputational grid of 256� 512, 512� 256 and 1024� 512 are given.The relative error from the integrated uniform Green fun
tion method uses a 
omputational gridof 256�256. Sin
e the nonuniform grid Green fun
tion does not need to double the 
omputationaldomain in the � dire
tion, it has the same 
omputational 
ost on a 256 � 512 grid as the uniformgrid Green fun
tion method does on a 256�256 grid. It is seen that the integrated Green fun
tionmethod on a 256� 256 uniform grid gives the least error. This suggests that the integrated Greenfun
tion method might be more eÆ
ient for a beam with large aspe
t ratio.
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FIG. 1: Radial ele
tri
 �eld Er and the absolute error of Er as a fun
tion of r from the nonunifrom gridGreen fun
tion method and from the uniform grid Green fun
tion method.
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FIG. 2: Relative error of Ex as a fun
tion of x from using the nonuniform grid Green fun
tion method andfrom using the integrated uniform grid Green fun
tion method.III. APPLICATIONSIn re
ent appli
ations, we have studied the 
oherent modes of multi-bun
h 
ollisions at RHICthrough a strong-strong beam-beam simulation [15℄. Fig. 3 gives a s
hemati
 plot of two 
ollidingbeams at RHIC. Here ea
h beam has three bun
hes. The six bun
hes 
ouple with ea
h otherthrough 
ollisions at four intera
tion points, IP2, IP6, IP8 and IP10. Table 1 gives a list of thephysi
al parameters used in the simulation. All bun
hes are assumed to have the same physi
alparameters listed in the table. Fig. 4 shows power spe
tra of horizontal 
entroid motion of threebun
hes. There are only two distin
t eigenmodes, the � mode (180 degree out of phase) and the� mode (in phase), whi
h are observable in this example. The other four modes are degeneratedand buried into the in
oherent 
ontinuous spe
tra. The � mode tune shift is 4:918� whi
h is aboutof a fa
tor of 4 times the single bun
h � tune shift 1:21�. This is in agreement with the analyti
al
al
ulation of Yokoya et. al. [16℄. The large tune shift of the � mode due to the multi-bun
h
ollisions presents a potential instability sin
e it 
an not be damped out by the 
ontinuous spe
trathrough the Landau damping. In above example, we have assumed that the two beams havethe same parameters. In reality, the parameters of two rings 
an be 
ontrolled so that the two
olliding beams have di�erent tunes. Fig. 5 gives power spe
tra of horizontal 
entroid motion ofthree bun
hes with the horizontal tune of the se
ond beam set as 0:2 while the �rst beam is set as
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FIG. 3: A s
hemati
 plot of two 
olliding beams at RHIC.beam energy (GeV) 100protons per bun
h 10.0 � 1010�� (m) 1.0RMS spot size at the IP (mm) 0.176betatron tunes (�x, �y) (0.22, 0.23)syn
hrotron tune �z 3.7e-4RMS bun
h length (m) 3.6momentum spread 1.6e-3beam-beam parameter � 0.00366TABLE I: RHIC physi
al parameters for beam-beam simulations0:22. The two 
olliding beams lose the 
oherent motion and the dipole mode disappears into the
ontinuous spe
tra.In another appli
ation, we have studied the time evolution of luminosity at KEKB. The physi
alparameter used in the simulation is given in Table 2. Fig. 6 shows the time evolution of singlebun
h 
ollision luminosity with (left plot) and without (right plot) a �nite 
rossing angle. With11 mrad of �nite 
rossing angle, the luminosity has dropped by about a fa
tor of two after about1000 turns. This suggests that using a head-on 
ollision (e.g. by using 
rab 
avity at intera
tionpoint) will signi�
antly improve the luminosity at KEKB.IV. SUMMARYIn this paper, we have reported on some re
ent advan
es of strong-strong beam-beam simulation.The new nonuniform grid Green fun
tion method for 
al
ulating the beam-beam for
es has theadvantage of better a

ura
y and less 
omputational 
ost for low aspe
t ratio beam in hadron
ollider. The appli
ation to the study of the multi-bun
h 
oherent modes at RHIC shows a mu
hlarger dipole mode tune shift than that of the single bun
h 
ollision. This mode 
an be removedwith asymmetri
 tunes of two 
olliding beams. In the KEKB appli
ation, the 
ollision with 11mrad 
rossing angle shows a signi�
ant de
rease of the luminosity 
ompared with the head-on
ollision. This suggests that using a 
rab 
avity to 
orre
t the 
rossing angle 
ollision will improvethe luminosity of the future ma
hine operation.
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FIG. 4: Power spe
tra (arbitrary normalization) of the horizontal 
entroid motion of three bun
hes at RHIC.
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FIG. 5: Power spe
tra (arbitrary normalization) of the horizontal 
entroid motion of three bun
hes withdi�erent tune in ea
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