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In this paper, we report on recent advances in strong-strong beam-beam sim-
ulation. Numerical methods used in the calculation of the beam-beam forces
are reviewed. A new computational method to solve the Poisson equation on
nonuniform grid is presented. This method reduces the computational cost by a
half compared with the standard FFT based method on uniform grid. It is also
more accurate than the standard method for a colliding beam with low trans-
verse aspect ratio. In applications, we present the study of coherent modes with
multi-bunch, multi-collision beam-beam interactions at RHIC. We also present
the strong-strong simulation of the luminosity evolution at KEKB with and with-
out finite crossing angle.

I. INTRODUCTION

The beam-beam interaction puts a strong limit on the luminosity of the high energy storage
ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus
or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An
accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high
energy colliders. In this case, the self-consistent strong-strong beam-beam simulation provides an
invaluable tool for the study of the colliding beams.

In the strong-strong beam-beam simulation, a number of simulation particles (macroparticles)
are used with the same charge-to-mass ratio as the real particles. Outside the interaction region,
the macroparticles are transported through the simulated lattice using transfer maps associated
with external elements, radiation damping, and quantum excitation. At the interaction point, the
electromagnetic fields from the beams are calculated and applied to the particles of the opposing
beam.

The soft Gaussian approximation is sometimes used to obtain the electromagnetic fields of the
beams at the collision point [1-3]. While this approximation has the advantage of computational
speed, it is not self-consistent because it assumes a Gaussian distribution for the macroparticles
even when the actual distribution might differ substantially from the Gaussian shape. To take into
account the effects of the beam distribution self-consistently, one has to solve the Poisson equa-
tion numerically during each collision for the actual macroparticle distribution at that instant. A
number of methods have been used to solve the Poisson equation. The five-point finite difference
method with Fourier analysis and cyclic reduction (FACR) has been used by Krishnagopal [4] and
Cai et al. [5]. This method solves the Possion equation efficiently with finite domain boundary
conditions. For the open boundary conditions, which are appropriate in typical beam-beam sim-
ulations, the method requires finding an effective boundary condition on the problem boundary;
this can be computationally expensive. In addition, this method is not efficient to handle the case
with two widely separated beams, where the domain of the source particles (particle domain) and
the domain of the electric field (field domain) are different. Another method based on the fast
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multipole expansion has been used by Herr et al. [6] to solve the Poisson equation. In this method,
the computational cost scales linearly with the number of particles or with the number of total
mesh points for the open boundary condition. The efficiency of this method is independent of the
distribution of the source particles and the field domain, which makes it suitable to handle the
situation with two separated beams. However, this method is an approximate algorithm in the
sense that the accuracy of the expansion depends on the radius of convergence. The computational
speed depends on the number of polynomials required in the multipole expansion.

The widely used method to solve the Poisson equation in beam-beam simulations is the Green
function method with fast Fourier transform (FFT) on uniform grid. This method uses an FFT to
calculate the cyclic summation on a doubled computational grid [7-10]. The computational cost
scales as N?log(N), where N is the number of grid points in one direction. By defining a new
shifted integrated Green function, this method can handle the separated beams, and beams with
large aspect ratio.

During the beam-beam interaction, when the bunch length is large compared with the beta
function value or the beam-beam forces are strong, finite bunch length effects are not negligible.
In this case, a multiple slice model has to be used. The computational cost scales as the square of
the number of slices. For a hadron collider with small radiation damping, it is required to track
the beams for many millions of turns to study the dynamics on the time scale of the lifetime of the
beams. To study the beam-beam interaction fully self-consistently for both beams (i.e. a strong-
strong formulation), and to include all the physical processes of long range off-centroid interactions,
finite beam bunch length effects, and crossing angle collisions, requires computational resources far
beyond the capability of current serial computers. A parallel beam-beam simulation code, Beam-
Beam3D, with both weak-strong and strong-strong capabilities, that can simulate these physical
processes accurately using high performance computers has been developed at Lawrence Berkeley
National Laboratory [12]. In this paper, we present recent advances in the numerical method to
calculate the beam-beam forces and in applications to the studies of beam-beam interactions at
RHIC and KEKB.

The organization of the paper is as follows: The computational methods are described in Section
2. Applications to the studies of beam-beam interactions at RHIC and KEKB are given in Section
3. We summarize our results in Section 4.

II. COMPUTATIONAL METHODS

In strong-strong beam-beam simulation, the electric fields generated by the opposite moving
beam can be obtained from the solution of Poisson’s equation. In Cartesian coordinate system,
the solution of Poisson’s equation can be written as

Moy = [ Glas.5,9)0(,9) dody (1

where G is the Green’s function, p is the charge density, and (z,y) represent the coordinates in
the plane perpendicular to the direction of motion of the beam. For the case of transverse open
boundary conditions, the Green’s function is given by:
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G(2,7,9,9) = —gn((z-3)"+(y—7)°) (2)

Now consider a simulation of an open system where the computational domain containing the
particles has a range of (0, L;) and (0, L), and where each dimension has been discretized using



N, and N, points, the electric potentials on the grid can be approximated as

Nz Ny

D(zi,yj) = hahy Y > Gz — zir,yi — yjr)p(zi, yj) (3)
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where z; = (¢ — 1)h, and y; = (j — 1)h,. This convolution can be replaced by a cyclic convolution
expression in a double-gridded computational domain. The cyclic convolution can be computed
efficiently using an FFT as described by Hockney and Eastwood [13].

The method described above involves use of the FFT on a uniform computational grid. In
high energy colliders, the colliding beams normally have a non-uniform transverse charge density
distribution. A nonuniform grid will help resolve the charge density distribution more efficiently.
To use a nonuniform grid, we have transformed the charge density distribution from the Cartesian
coordinates (z,y) into a cylindrical coordinates (r,6). Then, we define another transform between
radial r and a new variable s as:

s = —log(:-) (4)

where the constants k; and ks control the scale and the rate of the function variation between r
and s. Using a uniform grid along s will generate a nonuniform grid along r since dr = kikards.
For a uniform computational grid in (s,6) coordinates, we can use the FFT based method to
calculate the convolution for electric potential. A similar transform has been used in calculation
of the gravitational potential in a disk galaxy system [14]. The new Green function in the (s, )
coordinate is:

G(s,0) = _% log(e?1% — 2¢F15 cos () + 1) (5)

In the (s, 0) coordinates, both the Green’s function and the charge density distribution are periodic
functions of 6. Hence, we do not need to double the computational domain along 6 to use the
Hockey’s algorithm. This reduces the computational cost and the storage by a factor of two
compared with the standard FFT based Green method on uniform Cartesian coordinate.

As an example of the above algorithm, we have computed the radial electric field distribution
generated by a round beam with a Gaussian density distribution. The left plot of Fig. 1 shows
the analytical solution of the radial electric field E, as a function of radial distance r. The right
plot of Fig. 1 shows the absolute error of E, as a function of r using the nonuniform grid Green
function method and the standard uniform grid Green function method. It can be seen that
using the nonuniform grid Green function method, the numerical error of E, is about half of that
using the uniform grid Green function method. In this example, the transverse aspect ratio of the
colliding beam is one. This is true for most hadron collider where radiation damping is negligible.
For electron-positron colliders such as KEKB and PEPII, the colliding beam can have a very large
transverse aspect ratio. To test the applicability of the above algorithm, we have also calculated the
electric field for a Gaussian charge density distribution with an aspect ratio of 30. The relative error
of E; on the z axis is given in Fig. 2 together with that calculated from using the integrated Green
function method on uniform grid. Here, three relative errors of E; from using the nonuniform grid
Green function method on a computational grid of 256 x 512, 512 x 256 and 1024 x 512 are given.
The relative error from the integrated uniform Green function method uses a computational grid
of 256 x 256. Since the nonuniform grid Green function does not need to double the computational
domain in the 6 direction, it has the same computational cost on a 256 x 512 grid as the uniform
grid Green function method does on a 256 x 256 grid. It is seen that the integrated Green function
method on a 256 x 256 uniform grid gives the least error. This suggests that the integrated Green
function method might be more efficient for a beam with large aspect ratio.
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FIG. 1: Radial electric field E, and the absolute error of E, as a function of r from the nonunifrom grid
Green function method and from the uniform grid Green function method.
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FIG. 2: Relative error of F, as a function of x from using the nonuniform grid Green function method and
from using the integrated uniform grid Green function method.

III. APPLICATIONS

In recent applications, we have studied the coherent modes of multi-bunch collisions at RHIC
through a strong-strong beam-beam simulation [15]. Fig. 3 gives a schematic plot of two colliding
beams at RHIC. Here each beam has three bunches. The six bunches couple with each other
through collisions at four interaction points, IP2, IP6, IP8 and IP10. Table 1 gives a list of the
physical parameters used in the simulation. All bunches are assumed to have the same physical
parameters listed in the table. Fig. 4 shows power spectra of horizontal centroid motion of three
bunches. There are only two distinct eigenmodes, the m mode (180 degree out of phase) and the
o mode (in phase), which are observable in this example. The other four modes are degenerated
and buried into the incoherent continuous spectra. The 7 mode tune shift is 4.918¢ which is about
of a factor of 4 times the single bunch 7 tune shift 1.21£. This is in agreement with the analytical
calculation of Yokoya et. al. [16]. The large tune shift of the 7 mode due to the multi-bunch
collisions presents a potential instability since it can not be damped out by the continuous spectra
through the Landau damping. In above example, we have assumed that the two beams have
the same parameters. In reality, the parameters of two rings can be controlled so that the two
colliding beams have different tunes. Fig. 5 gives power spectra of horizontal centroid motion of
three bunches with the horizontal tune of the second beam set as 0.2 while the first beam is set as
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FIG. 3: A schematic plot of two colliding beams at RHIC.

beam energy (GeV) 100
protons per bunch 10.0 x 1010
B* (m) 1.0

RMS spot size at the IP (mm) 0.176
betatron tunes (v, vy) (0.22, 0.23)
synchrotron tune v, 3.7e-4
RMS bunch length (m) 3.6
momentum spread 1.6e-3
beam-beam parameter ¢ 0.00366

TABLE I: RHIC physical parameters for beam-beam simulations

0.22. The two colliding beams lose the coherent motion and the dipole mode disappears into the
continuous spectra.

In another application, we have studied the time evolution of luminosity at KEKB. The physical
parameter used in the simulation is given in Table 2. Fig. 6 shows the time evolution of single
bunch collision luminosity with (left plot) and without (right plot) a finite crossing angle. With
11 mrad of finite crossing angle, the luminosity has dropped by about a factor of two after about
1000 turns. This suggests that using a head-on collision (e.g. by using crab cavity at interaction
point) will significantly improve the luminosity at KEKB.

IV. SUMMARY

In this paper, we have reported on some recent advances of strong-strong beam-beam simulation.
The new nonuniform grid Green function method for calculating the beam-beam forces has the
advantage of better accuracy and less computational cost for low aspect ratio beam in hadron
collider. The application to the study of the multi-bunch coherent modes at RHIC shows a much
larger dipole mode tune shift than that of the single bunch collision. This mode can be removed
with asymmetric tunes of two colliding beams. In the KEKB application, the collision with 11
mrad crossing angle shows a significant decrease of the luminosity compared with the head-on
collision. This suggests that using a crab cavity to correct the crossing angle collision will improve
the luminosity of the future machine operation.
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FIG. 4: Power spectra (arbitrary normalization) of the horizontal centroid motion of three bunches at RHIC.
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FIG. 5: Power spectra (arbitrary normalization) of the horizontal centroid motion of three bunches with
different tune in each ring of RHIC.
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