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Consider two bunches of particles with densities
ρ1(x, t) and ρ2(x, t) normalized such that

∫
d3x ρi(x, t) = Ni , i = 1, 2 (1)

where Ni is the number of particles in bunch i. Within
bunch i, all particles are assumed to move with the com-
mon velocity vi in the Lab frame. If, during any time
interval, the densities ρ1 and ρ2 overlap, the bunches will
collide with a luminosity given by Lsc =

∫
dtd3xS, where

the luminosity density S is given by [1]

S = ρ1ρ2

√
(v1 − v2)2 − (v1 × v2)2

c2
. (2)

Here Lsc, with dimensions of 1/area, is the single-collision
luminosity, as emphasized by the subscript “sc”. Thus,
if σ is a reaction cross section, the dimensionless number
σLsc is the average number of events generated during
the collision for this particular cross section. For the
case of two trains of colliding bunches, the conventional
luminosity L is obtained by multiplying Lsc by the bunch
collision frequency, and the number of events generated
per unit time is σL.

If the bunches move collinearly, then v1×v2 = 0 hence
S = ρ1ρ2|v1 − v2| which is the intuitively correct result,
|v1 − v2| being the relative speed of the bunches. The
same result obtains in the nonrelativistic limit even if
the bunches do not move collinearly.

Assuming that the particles have mass, a justification
of Eq. (2), which is somewhat different than the one in
Ref. 1, is obtained by resorting to the basic expression
of the luminosity, which is defined in the rest frame of
one of the bunches. Thus, in the rest frame of bunch 1,
the density is given by S = ρ1ρ2v2, where v2 is the speed
of bunch 2 seen by bunch 1. In the nonrelativistic limit
(v1, v2 ¿ c), the immediate generalization of this formula
to any reference frame is S = ρ1ρ2|v1 − v2| because both
the particle density ρ and the relative speed |v1 − v2| are
Galileian invariants, hence so is S. In the relativistic case,
however, neither ρ nor |v1 − v2| is a Lorentz invariant,
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hence this expression can not, in general, be correct be-
cause |v1 − v2| is the relative speed of the bunches only
in the Lab frame. The v1 × v2 term in (2) is the rela-
tivistic correction that makes S a relativistic invariant.

To prove this, we resort again to the basic expression
for S by going to the rest frame of one of the bunches.
In this frame S is given, by definition, by

S = ρ1ρ2v12 (3)

where v12 is the relative speed of the bunches (if, say
bunch 1 is at rest, then v12 = v2). The general expres-
sion for S can be obtained by a Lorentz transformation
of this formula to the Lab frame. Since S is a Lorentz
invariant, this is most easily achieved by expressing (3) in
a manifestly invariant form. Now the relative speed v12

is, by definition, a Lorentz scalar; its manifestly invariant
form is [2, Eq. (3-4), p. 29]1

v12 =
c
√

(u1u2)2 − c4
(u1u2)

(4)

where u is the four-velocity uµ = γ(c,v), related to the
four-momentum pµ by pµ = mcuµ, m being the rest-mass
of the particle, and where (u1u2) denotes the Lorentz
scalar product (u1u2) = u1µu

µ
2 . As for the product ρ1ρ2,

one can express it in an invariant form by noting that the
particle density ρ transforms as the time component of a
Lorentz vector, namely the particle current density jµ =
(cρ,vρ). Given that the only four-vectors at our disposal
are jµi and uµi for i = 1, 2, and that uµ = (γ/ρ)jµ, it
follows that the only three independent scalars are (j1j2),
j2
1 and j2

2 . Of these, only (j1j2)/c2 = ρ1ρ2(1−v1 ·v2/c
2)

reduces to ρ1ρ2 when either v1 = 0 or v2 = 0. Therefore,
the only acceptable Lorentz invariant generalization of
ρ1ρ2 is

ρ1ρ2 →
(j1j2)

c2
(5)

hence the general expression for S is

S =
(j1j2)

√
(u1u2)2 − c4

c(u1u2)
. (6)

1 Ref. 2 uses natural units (c = 1); in this note we have restored
the c’s.
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Substituting (u1u2) = γ1γ2(c2−v1 ·v2) into (4) yields

v12 =
c
√

(c2 − v1 ·v2)2 − (c2 − v2
1)(c2 − v2

2)

c2 − v1 ·v2

=

√
(v1 − v2)2 − (v1 × v2)2/c2

1− v1 ·v2/c2
(7)

where we used the identity (v1 ·v2)2 = v2
1v2

2−(v1×v2)2.
Expression (7) has the correct properties of a relative
speed: it is symmetric under the exchange 1 ↔ 2; it
reduces to v2 if v1 = 0, to v1 if v2 = 0, and to |v1 − v2|
in the nonrelativistic limit; it has a maximum value of
c when v1 = −v2 with |v1| = |v2| = c; and it vanishes
only when v1 = v2.

Combining the above results, Eq. (6) yields Eq. (2),
completing the proof.

Equation (6) is a manifestly invariant form of S. An
alternative invariant expression follows from substituting
uµ = (γ/ρ)jµ and j2 = (cρ/γ)2 in (6), yielding [3]

S =
1

c

√
(j1j2)2 − j2

1j
2
2 . (8)

For relativistic beams colliding almost head-on, i.e.,

v12 ' c, or, more precisely, γ1γ2(1−v1 ·v2/c
2)À 1, one

obtains the approximate expression

S ' (j1j2)

c
=
ρ1ρ2

c
(c2 − v1 ·v2) (9)

which simplifies to S ' 2cρ1ρ2 for exactly head-on colli-
sions.

For beams of massless particles the above derivation
of S is not possible, as it relies on the rest frame of the
bunch as a starting point. However, since expression (2)
(or (6) or (8)) for S does not depend explicitly on the
particle masses, it is still the valid expression for the lu-
minosity density. For example, if both beams are made
up of massless particles, Eq. (8) yields

S =
(j1j2)

c
= cρ1ρ2(1 + cos θ) , (10)

where θ is the collision crossing angle (i.e., the comple-
ment of the angle between v1 and v2, so that cos θ = +1
for exactly head-on collisions).

I am indebted to Don Edwards for his keen interest in
the Møller factor.
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