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Abstract

We present PARSEC, a 3D parallel self-consistent parti-
cle tracking program which allows electron-cloud calcula-
tions in arbitrary external fields. The program is based on
an general particle tracking framework called GenTrackE
[5]. The Lorentz force equation is integrated with time as
the independent variable. A 3D parallel Multigrid solver
computes the electric field for the drive beam in the beam
frame, while the space-charge field of the electrons is com-
puted in the lab frame. The resulting total field, obtained by
superposition, acts on both the beam particles and the cloud
electrons. Primary and secondary emission takes place at
each time step of the calculation. This sort of computation
is only possible by the use of massive parallelization of the
particle dynamics and the Poisson solver in combination
with modern numerical algorithms such as the Multigrid
solver with Gauss-Seidel smoothing.

INTRODUCTION AND MOTIVATION

The electron-cloud effect (ECE) has been investigated in
various storage rings for several years now [1]. The ECE
arises from the strong coupling of a two-species plasma
with the surrounding vacuum chamber. Several analyti-
cal models and simulation programs and have been devel-
oped to study this effect [2]. Owing to the complexity of
the problem, these simulation codes typically make one or
more simplifying assumptions, such as: (i) the electrons are
dynamical but the beam is a prescribed function of space
and time; (ii) the beam is dynamical but the electron cloud
is a prescribed function of space and time; (iii) both the
beam and the electrons are dynamical, but the electron-
wall interaction, particularly the secondary emission pro-
cess, is either absent or much simplified; (iv) the geometry
of the beam and/or vacuum chamber is much simplified (eg.
round beams and/or cylindrical chambers); (v) the simula-
tion “looks” at only one specific region of the machine, typ-
ically a field-free region or one magnet of a specific kind;
(vi) the forces on the particles, both from, and on, the elec-
trons and the beam, are purely transverse. Computer codes
involving these approximations, when applied in the proper
context, have shed valuable information on one or more as-
pects of the ECE.

There are problems, however, in which any of these ap-
proximations may render the reliability of code inadequate
for a quantitative understanding of the dynamics. One such
example concerns problems involving very long, intense,
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bunches with significant variation in the longitudinal pro-
file, which require a self-consistent, fully 3D simulation,
including a full description of the storage ring lattice (or at
least, a section of the lattice at least as long as the bunch).
Another example might be the simulation of damping rings
for future linear colliders, which make significant use of
wigglers. In this article we report on progress towards the
goal of a fully self-consistent and realistic simulation of
the ECE which, in its final stage, will not invoke any of the
above-mentioned simplifications.

THE OVERALL SIMULATION MODEL

Self-consistent formulation

Let the particle coordinates of particle k be �xk =
(q1, q2, q3)k, and the normalized velocity be �βk =
(vx/c, vy/c, vz/c)k where c is the speed of light (all quan-
tities in MKS units unless explicit stated otherwise). We
consider � = 1, 2, · · · magnetic elements which makes up
what is called the lattice L. Defining I = {1, 2, · · · } and
J = {1, 2, · · · } the index sets for the beam particles and
electrons, respectively as unique identifiers, we are able to
distinguish beam particle (i ∈ I) and electron coordinates
(j ∈ J) in an natural way (see Figure 1 as an illustration).
For each particle k ∈ I ∪ J we solve formally
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Figure 1: (color) Geometry and Particle domains.

d(mkγkc�βk)
dt

= �F (�xk, t) (1)

�F (�xk, t) =
qk

γkmk
( �E(�xk, t) + �βk × �B(�xk, t)) (2)

where mk and qk is the mass and charge of the particle,
respectively, and γk its usual relativistic factor.

The lattice magnetic field �Bext in cylindrical coordinates
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is represented by:

Bρ =
∑

cm,nI ′m(nkzρ) sin(mφ) cos(nkzz)

Bφ =
∑

cm,n
m

nkzρ
Im(nkzρ) cos(mφ) cos(nkzz)

Bz = −
∑

cm,n
m

nkzρ
Im(nkzρ) sin(mφ) cos(nkzz).

(3)

where In is the usual modified Bessel function, which sat-
isfies I ′m(nkzρ) = 1

2 [Im−1(nkzρ) + Im+1(nkzρ)]. In this
formulation we will treat coasting beams only although
it is straightforward to include acceleration. The poten-
tial φ is obtained by solving two Poisson problems with
ρe(�xj) and ρb(�xi) the electron and beam charge density.
Let �x′

i = L(�xi) with L denoting the proper Lorentz trans-
formation from the laboratory to the beam rest frame. The
first Poisson problem, in which the beam charge density ρb

is the source, reads:

�φ(�x′
i) = −ρb(�x′

i)
ε0

, �x′
i ∈ Ω ⊂ R3

φ(�x′
i) = 0, �x′

i ∈ ∂Ω.

(4)

Upon Lorentz-transforming back to the Lab frame, this
yields both an electric ( �Eb) and magnetic field ( �Bb). As-
suming that the electrons are sufficiently non-relativistic,
which is typically a good approximation, we can neglect
their contribution to the magnetic field, and we can solve
in the laboratory frame for the second Poisson problem, in
which the electron-cloud density ρe is the source,

�φ(�xi) = −ρe(�xi)
ε0

, �xi ∈ Ω ⊂ R3

φ(�xi) = 0, �xi ∈ ∂Ω
(5)

thus the full answer is obtained by superposing the two
fields:

�F (�xk, t) =
qk

γmk
( �Ee(�xj , t) + �Eb(�xi, t)+

�βk × ( �Bext(�xk, t) + �Bb(�xj , t)))
(6)

where �Ee is the electric self-field of the electrons.

Secondary Emission Model

When an electron strikes the vacuum chamber wall, it
can be absorbed or can generate one or more secondary
electrons. In our computations we simulate this process by
a detailed probabilistic described elsewhere [3]. This pro-
cess incorporates, as inputs, the measured secondary elec-
tron yield (SEY) δ and the energy spectrum of the emitted
electrons, dδ/dE for a given vacuum chamber surface ma-
terial. The three main subprocesses, namely elastical re-
flection, rediffusion, and true secondary emission, are in-
cluded. We are not concerned for the moment with the
processes responsible for the generation of primary elec-
trons (chiefly the photoelectric effect, ionization of residual

gas, and stray beam particles striking the vacuum chamber
wall), since these process is simpler to simulate with phe-
nomenological models.

Time integration

The code integrates (1) using a 4th-order Runge-Kutta
method, with adaptive time step control for the electrons.
We estimate the time step Tj by considering the cyclotron
frequency ωc = eB/me, consequently

Tj =
2π

ωcK
. (7)

is defined upon the factor K. Defining εmin and εmax the
minimum and maximum error tolerated we estimate K us-
ing two Runge-Kutta steps and Richardson Extrapolation
[6]. Choosing an initial step size Tj by setting K = 1 and
let u1 be the result of an Runge-Kutta step of length Tj .
Let u2 is the result of two subsequent Runge-Kutta steps of
length Tj/2. We then estimate the error by ε = |u1 − u2|.
Richardson Extrapolation is then be used to set K corre-
sponding to an error-range as defined. This procedure will
guarantee the minimal work in order to achieve a desired
accuracy, considering the dynamic of the individual parti-
cle.

#1 ∀i ∈ I
#2 for m = 1 to N
#3 Integrate equation of motion

#4 end for

#5 calculate ρz drive beam

#6 generate electons

#7 ∀j ∈ J
#8 while timeLeftj > 0.0 AND NOT ATTHEWALLj

#9 Integrate equation of motion

#10 if(�xj /∈ Ω)

#11 status of particle j equal to ATTHEWALL

#12 end if

#13 end while

#14 ∀j ∈ J
#15 if status of particle j equal to ATTHEWALL

#16 generate secondaries

#17 end if

#18 if secondary generated goto #7

#21 calculate space charge

Figure 2: Tracking Algorithm

Particle Tracking Procedure

As a first step towards a full lattice simulation, we
model a portion of the magnetic lattice by imposing pe-
riodic boundary conditions in the z coordinate, for exam-
ple one half of the PSR circumference or one FODO cell
of the LHC arc. Further, we assume a constant number
of particles in the drive beam, and a fixed number N of
time steps of size ∆T . All electrons i ∈ I and protons
j ∈ J are advanced by N∆T followed by a space-charge



calculation. The simplified algorithm for advancing all
particles by N∆T in time is pictured in Figure 2, where
timeLeftj = N∆T − tj and ATTHEWALL indicate that
a particles hits the vacuum chamber (we left out some of
the indexes where the meaning is deducible form the con-
tents). ρz is the longitudinal charge density of the drive
beam which determines the distribution of the generated
primary electrons.

Poisson Solver

For the Poisson solver, this type of simulations is very
demanding. First of all, the computational domain Ω is
very large and almost completely filled with simulation
particles. Second, the number of macro particles (or simu-
lation particles) is huge (many times 106) and the number
of time steps is large as well. The Poisson solver uses a
semi-unstructured grid as shown in Figure 3 to decompose
Ω. Linear bases function are used to assemble the stiff-
ness matrix A and the right hand side fh (discrete charge
density) is constructed using a area wighting scheme. The
resulting linear system of equations

−∆φ =
ρ

ε0
, φ = 0 on ∂Ω =⇒ Auh = fh (8)

is solved using parallel Multigrid. From the solution uh we
back-interpolate and use a second-order finite-difference
scheme in order to obtain the two electric fields used in
equation (6). Preliminary performance of the parallel Pois-

Figure 3: (color) Finite Element Discretization of Ω

son Solver [4] and the parallel grid generators is shown in
Table 1 for an toy Poisson problem in S3 (sphere). We
show in Table 1 the scalability of the grid generator and the
solver. A method is said to be scalable, if the time (T ) times
the number of processors used (P ) divided by problem size
(M ) remains bounded as P and M gets increased. The
data in Table 1 is given for the grid generation (in column
3) and for one multigrid iteration (in column 5) with an
Gauss-Seidel smoother. Table 1 shows excellent scalabil-
ity with respect to the problem size M which is equivalent
to say we can handle in the order of 1011 macro particles
in a simulation with reasonable computing time. For this

scaling study we use the Seaborg (IBM SP-3) computer at
NERSC.

P M TgP/M T TP/M

8 625,464 3.5e-3 3.1 3.9e-5
32 306,080 8.5e-3 0.78 8.1e-5
248 4,751,744 5.90e-3 1.2 6.2e-5
248 36,998,619 7.50e-3 7.7 5.1e-5
960 23,312,735 4.85e-3 4 1.64e-4
2025 405,242,845 6.60e-3 10.7 5.3e-5
4075 7,166,171,845 8.76e-3 160 9.9e-5

Table 1: Scalability of the parallel grid generator TgP/M
and the Poisson solver showing also T , the time in seconds
for one Multigrid step

CONCLUSION

The presented code PARSEC is based on GenTrackE,
which is written in C++ and is fully parallelized using MPI.
PARSEC advances macro particle of the drive beam and
the electrons using a 4th-order Runge-Kutta method. Vari-
able time steps for the electrons according to their dynam-
ics are used. The arbitrarily shaped computational domain
is discretized using linear finite elements, the resulting lin-
ear system of equation is solved efficiently by the use of an
massive parallel and scalable Multigrid solver.

We are finalizing the code construction and are about to
start simulation of a simplified LHC FODO cell, as well as
some part of the Los Alamos proton storage ring. The issue
of large aspect ratios in the computational domain and the
impact of the accuracy of the Poisson solver will be inves-
tigated in detail, a subject which is of general importance
in many space charge dominated problems.
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