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Abstract

We present beam-beam simulation results from a strong-
strong gaussian code for separated beams for the LHC and
RHIC. The frequency spectrum produced by the beam-
beam collisions is readily obtained and offers a good op-
portunity for experimental comparisons. Although our re-
sults for the emittance blowup are preliminary, we conclude
that, for nominal parameter values, there is no significant
difference between separated beams and center-on-center
collisions.

1 INTRODUCTION AND SUMMARY.

In this note we present first results for beam-beam simula-
tions for the LHC and RHIC with separated beams. There
are two main motivations for these kind of simulations: (a)
to assess undesirable effects from LBNL’s sweeping lumi-
nosity monitoring scheme for the LHC [1], and (b) to assess
undesirable effects form the process of bringing initially-
separated beams into collision. In addition, we want to
simulate conditions that might be testable at RHIC in or-
der to test our understanding of strong-strong beam-beam
dynamics in hadron colliders.

For the cases presented here, we have not found any in-
dications of adverse effects for nominal parameter values.
However, these simulations have been run for a maximum
of T = 105 turns, which amount to only a brief interval
of real accelerator time, so our conclusions are subject to
change upon more detailed scrutiny.

The results presented here were obtained with a three-
dimensional strong-strong gaussian code whose features
are described below. This investigation represents a direct
extension of the work by Krishnagopal [2], and Zorzano
and Zimmermann [3].

2 SIMULATIONS.

2.1 Code features.

Our code is both an extension and a simplification of the
code TRS [4]. It is a strong-strong simulation code in
which the two colliding bunches are represented by a given
numberM of macroparticles that are initially distributed
gaussianly in 6-dimensional phase space. The beam and
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ring parameters for the two rings are fully independent.
The heart of the code is the beam-beam module: at every
turn, just before the beam-beam collision, the centersx̄ and
ȳ, and rms sizesσx andσy of the two distributions are com-
puted from the macroparticle distributions, and these four
dynamical quantities are fed into the Bassetti-Erskine [5]
formula for the field of a relativistic gaussian distribution.
The electromagnetic kick is computed from this expression
and applied to each particle of the opposing beam. Then
the role of the two beams is reversed before proceeding.
Finite bunch-length effects are taken into account by slic-
ing the bunch longitudinally into a certain numberK of
slices, each of which acts as a kick on the particle as it goes
through the kicking bunch. A weak-strong mode is avail-
able as an option controlled by an input switch.

After the beam-beam kick, the beams are transported
along the rings by a the action of a linear Courant-Snyder
one-turn map that depends on the machine tunes and beta
functions at the interaction point. A synchrotron rotation
is performed on the longitudinal coordinates. Radiation
damping and quantum excitation are applied once per turn
by the action of a localized kick.

Our code can also describe beam-beam collision with
separated beams by means of an input-specified closed-
orbit displacement. This displacement can be static or
time-dependent, and can be independently specified for ei-
ther (or both) of the two beams. In addition, the code can
optionally simulate a beam feedback element whose action
is to shift the transverse position of the macroparticles so
that their centroid is brought back to the specified closed
orbit at every turn. Finally, the code can describe beams of
various particle species, namelye+, e−, µ+, µ−, p, p̄ and
Au79+ ions in any desired combination. An extension to
any other kind of ion is straightforward.

The code has, at present, several simplifications in the
modeling of the collider. In particular, the beam-beam col-
lisions have zero crossing angle; there is only one bunch
per beam, so that there are no parasitic collisions; there is
only one interaction point in the ring. These simplifications
will be removed in future versions.

An intrinsic deficiency of the soft-gaussian approach is
the introduction of an inconsistency in the calculation: al-
though the actual macroparticle distribution deviates from
the gaussian shape as time evolves, the beam-beam kick
is always computed under the assumption of a gaussian
shape. This inconsistency is, in principle, more serious
for hadron simulations than fore+e− simulations, since



the damping times are typically much larger than typical
simulation runs in the former case than in the latter. How-
ever, for short runs and weak beam-beam parameters, as
in the examples presented here, we have checked that the
distribution does not deviate significantly from the gaus-
sian shape, and hence this inconsistency is not serious. The
question remains, however, whether the gaussian shape is
a good approximation to the actual particle distribution ex-
pected (or realized) in hadron colliders, particularly after
long times following injection. We do not attempt to an-
swer this question here. However, we intend to shed some
light on this issue in the future by allowing the code to use
distributions other than gaussian.

2.2 Simulation conditions.

As mentioned above, in all results in this note the cross-
ing angle is zero, there is only one bunch per beam (no
parasitic collisions), and there is only one interaction point
in the ring. The damping time for the LHC at 7 TeV is
T ' 109 turns, and is larger for RHIC with Au79+ ions at
100 GeV/nucleon. Since our runs are for at most105 turns,
we have turned off radiation damping and quantum exci-
tation in the code, which amounts to setting the damping
time to∞. The feedback is turned off. In all cases we use
M = 10000 macroparticles per bunch. Other parameters
are listed in Tables 1 and 2.

3 RESULTS.

3.1 Results for the LHC.

Nominal collision conditions. For reference we
present first the results for nominal conditions, with pa-
rameters as specified in Table 1 and the beams colliding
center-on-center. As seen in Fig. 1, the beam blowup is
insignificant over105 turns, and the rms sizes show the ex-
pected statistical fluctuations of order1/

√
M = 1%.

Table 1: Selected LHC parameters [6].

Beam energy parameter,γ 7460.52
Protons per bunch,N 1.05× 1011

Beta-function at the IP,β∗ [m] 0.5
RMS spot size at the IP,σ0 [µm] 15.9
Nominal beam-beam parameter,ξ −0.0034
Tunes,(νx, νy) (0.31, 0.32)
RMS bunch length,σz [m] 0.077
Synchrotron tune,νs 0.0021

Fig. 2 shows the absolute value of the spectra of the sum
and difference of the beam centroids. The coherent modes
are clearly seen, with theσ modes at the lattice tunes. The
π modes are downshifted from theσ modes by∼ 1.1ξ.
The incoherent spectrum lies in between the two coherent
modes.
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Figure 1: The rms beam sizes for nominal collisions.
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Figure 2: The beam-beam tune spectra during nominal col-
lisions. The four traces are the absolute value of the spec-
tra of the sum and difference of the beam centroids. The
normalization is such that the highest peak among the four
traces is arbitrarily set to unity; the relative heights of the
traces are meaningful. Only the first 25000 turns of the run
were used in the computation of the spectra.

Sweeping one beam about the other. In the luminos-
ity monitoring scheme being developed at LBNL for the
LHC one beam is deliberately swept in a circle about the
other, which remains fixed. This sweeping is achieved by
an appropriate time-dependent closed orbit bump spanning
the interaction point (IP). As a first test we have chosen a
sweeping period of 1000 turns and a sweeping radius of
0.6σ0 for the closed orbit of beam #2, while the closed or-
bit of beam #1 remains static and is offset by0.2σ0 from
the nominal IP at45◦ relative to the horizontal axis. The
luminosity per collision is shown in Fig. 3, showing the
characteristic fluctuations due to the off-center collisions



with a period of 1000 turns. In practice, this is the signal
that will be used to optimize the luminosity, although the
period will be significantly larger than1000 turns. The rms
beam sizes (Fig. 4) do not show significant differences with
the nominal conditions (Fig. 1). Fig. 5 shows the beam cen-
troid spectra; comparing with the nominal case (Fig. 2) one
sees that theσ−π tune split is smaller during the sweeping
operation owing to the lower effective beam-beam param-
eter. The difference spectra also show sidebands of theπ
modes separated by 0.001, corresponding to the sweeping
tune.
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Figure 3: The luminosity per collision during the sweeping
process.
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Figure 4: The rms beam sizes during the sweeping process.

Statically-offset collisions. We have also tested to see
if constantly-separated beams are more sensitive to beam
blowup than beams colliding head-on. Fig. 6 shows the rms
beam sizes for the case in which the closed orbit of beam

10-3

2

4

6

10-2

2

4

6

10-1

2

4

6

100

0.3200.3150.3100.305

tune

 x,sum
 x,dif
 y,sum
 y,dif

σx
σy

πy
πx

LHC
sweep 0.6/0.2

Figure 5: The beam-beam tune spectra during the sweeping
process.

#2 is displaced vertically from that of beam #1 by3σ0 and
is held fixed in this position. Comparing with the nominal
case (Fig. 1), there is no significant difference. Fig. 7 shows
the beam centroid spectra. Comparing with the nominal
case, Fig. 2, there is an important qualitative difference:
theπy coherent mode isupshiftedfrom theσy mode rather
than downshifted. This change is due to the fact that the
slope of the beam-beam force at a separation of3σ has the
opposite sign from the slope near the origin. In addition, of
course, theσx−πx tune split is smaller than in the nominal
case owing to the smaller effective beam-beam parameter.
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Figure 6: The rms beam sizes when beam #2 is displaced
vertically from beam #1 by3σ0.

Closed-orbit squeeze. We have also tested to see if
any undesirable effects appear when the beams are brought
transversely into collision following the end of the accel-
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Figure 7: The beam centroid spectra when beam #2 is dis-
placed vertically from beam #1 by3σ0. Notice that theπy
coherent mode is upshifted from theσy mode.

eration ramp. For this purpose we assume that the closed
orbit of beam #2 starts outs vertically displaced from the
nominal IP by3σ0 and is linearly brought down to the nom-
inal IP over a time interval of 25000 turns, while the closed
orbit of beam #1 is held fixed at the nominal IP. We ran the
simulation for an additional 5000 turns for a total of 30000
turns. Fig. 8 shows the normalized beam centers,x̄i/σ0

andȳi/σ0 as a function of time, fori = 1, 2. Fig. 9 shows
the rms beam sizes, and Fig. 10 shows the luminosity per
collision during this process, exhibiting the characteristic
gaussian shape as the beam overlap increases.
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Figure 8: The normalized beam centers as a function of
time during a vertical closed-orbit squeeze.
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Figure 9: The rms beam sizes as a function of time during
a vertical closed-orbit squeeze.
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Figure 10: The luminosity per collision as a function of
time during a vertical closed-orbit squeeze.

3.2 Results for RHIC.

Nominal collision conditions. Nominal conditions for
RHIC are shown in Table 2. For these conditions, Fig. 11
shows the beam centroid spectra. As in the case of the
LHC, theσ coherent modes are located at the ring tunes,
and theπ modes are downshifted from theσ modes by
1.1ξ.

Split tunes. We have run one case in which the tunes
of the two rings are split by 0.005, so that all four tunes are
different, (νx1 , νy1) = (0.190, 0.195) and (νx2 , νy2) =
(0.180, 0.185). In this case, as shown in Fig. 12, all co-
herent modes have disappeared, as expected from the the-
ory [8].



Table 2: Selected RHIC parameters [7].

Beam energy parameter,γ 106.5
Au79+ ions per bunch,N 1× 109

Beta-function at the IP,β∗ [m] 10
RMS spot size at the IP,σ∗ [µm] 396
Nominal beam-beam parameter,ξ −0.0023
Tunes,(νx, νy) (0.19, 0.18)
RMS bunch length,σz [m] 1
Synchrotron tune,νs 0.000745
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Figure 11: Beam centroid spectra for nominal collision
conditions (Table 2).
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Figure 12: Beam centroid spectra for split tunes, indicated
by the arrows. Other parameters are as specified in Table 2.
Notice that all coherent modes have disappeared.

Semi-weak-strong case. By “semi-weak-strong” we
simply mean that the number of particles per bunch is dif-
ferent in the two beams. Specifically, we chooseN1 =
2 × 109, with other parameters as specified in Table 2. As
seen in Fig. 13, theπ modes have disappeared because they
have shifted into the continuum of the spectrum and hence
have Landau-damped, in agreement with theoretical expec-
tations [8].
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Figure 13: Beam centroid spectra for unequal bunch inten-
sities: N1 = 2 × 109, N2 = 1 × 109. Other parameters
are as specified in Table 2. Notice that theπ modes have
disappeared.

Weak-strong case. Finally, we present a simulation in
the “weak-strong” mode that is only of mathematical inter-
est. In this case beam #2 is represented by a mathematical
gaussian lens rather than by a collection of macroparticles.
Other than this, all parameters are as stated in Table 2; in
particular, the number of particles per bunch and the tunes
are the same for the two beams. In this case both coherent
modes have disappeared, and the spectrum only shows the
incoherent part. The sum and difference spectra coincide
exactly, since beam #2 is static.

4 DISCUSSION.

The appearance of coherent dipole beam-beam modes is
perhaps the cleanest manifestation of the beam-beam in-
teraction in strong-strong mode and offers the possibility
of simple and meaningful comparisons with experiment.
Three examples of such measurements are: (1) the tune
shift of theπ mode as a function of beam-beam separation;
(2) the disappearance of the coherent modes as the tunes of
the two rings move away from each other; and (3) the dis-
appearance of theπ modes as the bunch intensities of the
two beams become sufficiently different. The thresholds
and magnitudes of these effects can be readily computed
by simulations, as our samples show. Of course, one has
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Figure 14: Spectrum for a weak-strong simulation in which
beam #2 is represented by a static gaussian lens. All param-
eters are as shown in Table 2. The sum and difference spec-
tra coincide exactly. Note the absence of coherent modes.

to make sure that the tune spread from lattice nonlineari-
ties is small enough, otherwise the coherent modes might
be Landau-damped. Obviously this issue requires further
detailed study.

For a few selected cases we have verified that our results
are in excellent agreement with those in Ref. 3, lending
support to the validity of the two codes.

The coherent beam-beam renormalization factor
|(νπ − νσ)/ξ| has the value 1.1 in our calculations, which
appears to be∼ 10% smaller than analytic estimates [8,9].
We do not know if this difference is significant.

For the cases with separated beams (static separation,
closed-orbit squeeze, and beam sweeping), our results do
not show noticeable detrimental effects such as emittance
blowup. Of course our conclusions are based on rela-
tively short runs, and may change upon further examina-
tion. Nevertheless, it is encouraging that there is no signif-
icant difference with the case of nominal, center-on-center,
collisions.

Sinceσz/β∗ is small for both machines, we have used in
all cases shown here the impulse approximation (K = 1)
for the beam-beam collision. We have verified that this is a
valid approximation by running sample cases withK = 5,
which show insignificant differences with theK = 1 cases.
The advantage of the single-slice calculations is compu-
tational speed, since the CPU time is proportional toK.
For M = 10000 in strong-strong mode and a linear lat-
tice map, our runs take∼ 5600 CPU seconds to run for
T = 25000 turns on a Cray SV1 computer at NERSC. In
this regime the computer speed is limited by the calcula-
tion of the beam-beam force, and overall CPU time scales
with the productT ×K ×M . If we turn on the radiation
damping and quantum excitation elements, computer speed

is slightly lower.
Although synchrotron motion leads, even in the impulse

approximation, to synchrobetatron coupling, the effects
from this coupling are very weak in the cases reported here
owing to the smallness ofνs andσz/β∗. As a result, it
is legitimate to ignore the longitudinal motion by setting
νs = 0, although we have not bothered to do so. The imple-
mentation of a crossing angle in our calculations might in-
troduce more significant synchrobetatron coupling effects.

We have initiated sensitivity studies with respect to two
parameters that are directly relevant to the cost (in terms
of CPU time) and reliability of our simulations, namely:
the number of macroparticles per bunch, and the length
of the simulation. The beam centroid spectra is quite in-
sensitive to these two parameters: even 100 macroparti-
cles per bunch running for 1000 turns yield very accurately
the tunes of the coherent modes. On the other hand, beam
blowup is not given reliably when one uses few macropar-
ticles.

As mentioned above, an intrinsic limitation of our code
is the gaussian approximation. Although the initial distri-
bution in our simulations is, by construction, gaussian, this
shape cannot in principle persist for long times owing to
the nonlinearities of the beam-beam force. For the nominal
LHC beam-beam parameter value we have verified that the
deviations from the gaussian shape of the distributions are
insignificant up to105 turns, although these deviations be-
come clear (though still a few percent) in sample runs for
bunch intensities 10 times the nominal value. Furthermore,
in a real hadron collider, the initial particle distribution is
sensitive to the injection process, and is unlikely to be ex-
actly gaussian. We plan to augment our simulation code
by allowing shapes other than gaussian (but still of a pre-
scribed functional form), and determining the effect of the
change on the beam centroid spectra. We also plan to op-
timize the PIC code CBI [10], which does not make any
assumption about the shape of the distribution, by adapting
it to a parallel computer.

The gaussian approximation (or, indeed, any approxima-
tion of a specific functional form) leads to purely numerical
beam blowup that might mask physical blowup effects due
to the nonlinearities of the forces. Fig. 15 shows the result
for the rms beam sizes for the LHC for bunch intensities
10 times the nominal value. There is an approximately lin-
ear increase in beam size whose slope we may callσ̇. By
repeating this calculation forM = 100 andM = 1000,
we have found the empirical scaling laẇσ ∝ M−p where
the scaling exponent isp ' 0.7 − 0.8. Further investiga-
tions are planned, particularly the dependence on tune and
on beam separation.
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