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INCOHERENT EFFECTS DRIVEN BY THE ELECTRON CLOUD ∗
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Abstract

As a result of the synchrotron radiation from a positively-
charged beam, an electron cloud is expected to develop
in the vacuum chamber from the combined effects of the
photoelectric and secondary emission processes [1–3]. We
provide here a first estimate of the electron-cloud effect on
individual particles of the beam. We focus on the space-
charge tune spread, the distortion of the beta function and
the dispersion, and synchro-betatron coupling. We illus-
trate the effects with numerical applications to the PEP-II
positron ring [4]. We conclude that the magnitude of the
effect is not negligible, although it is not large either. How-
ever, the present calculations can only be considered as a
first estimate, since they do not include details of the elec-
tron cloud formation in different regions of the ring.

1 METHOD AND APPROXIMATIONS

We assume that an electron cloud has been established
in the vacuum chamber of a positively-charged beam of
closely spaced bunches. Although our analysis can be ap-
plied to any case with similar conditions, we will choose
as an example the PEP-II low-energy ring (LER), which
contains the positron beam.

Numerical simulations for the pumping straight cham-
bers in the arcs of the PEP-II LER for a photon reflectivity
R ' 1, photoelectric yieldY ′ = 1 and secondary electron
yield corresponding to TiN, show that the electron cloud
density is approximately uniform near the center of the
chamber [3]. Indeed, the density on axis isd ' 6.5 × 105

electrons/cm3, while its average value is̄d ' 4.1 × 105

electrons/cm3. For the purposes of this article we will
make the approximation that the electron cloud density is
uniform throughout the chamber and we will focus on the
details of the electron cloudwithin a positron bunchas it
traverses this uniform cloud. For vacuum chamber regions
within a dipole magnetic field, the uniform-density approx-
imation is not a good one, and a more detailed calculation
is required. For the PEP-II LER, however, the pumping
straight chambers account for∼ 93% of the arc length and
∼ 62% of the ring circumference; hence our results, though
incomplete, are meaningful.

When a bunch travels through the cloud, its head sees a
densityd̄; trailing positrons within the bunch sample dif-
ferent values of the density as the electrons are pulled in.
The local electron densityd is characterized by a dimen-
sionless functionρ(z) of the longitudinal coordinatez such
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Figure 1: The electron distribution just after the bunch tail
has passed. In this case, we used a sample of 100,000 static
electrons initially distributed uniformly in a disk of radius
10 mm about the beam axis.

thatd = d̄ρ(z) with ρ(z) normalized such thatρ(z) = 1
at the head of the bunch. Making the approximation that
the chamber cross-section is a perfect ellipse of semi-axes
a andb, the average linear densitȳλ is given, in terms of
the average bulk electron densitȳd, by

λ̄ = −eπabd̄ (1)

while its local density isλ(z) = λ̄ρ(z).
In our simulations aiming at determiningρ(z), we di-

vide the bunch longitudinally into a certain number of
kicks such that the “head” and “tail” kicks are located at
z = ±zh. Experience shows that adequate numerical con-
vergence is achieved with 51 equally-spaced kicks whose
weight are gaussian inz with rmsσz such thatzh = 3σz/2.
The simulation proceeds by “injecting” a bunch into a uni-
form cloud of static1 electrons, and we extract the electron
density at all kick locationsz. As an example, Figure 1
illustrates the transverse particle distribution just after the
tail of the bunch has passed.

For the purposes of determiningρ(z) we count only
those electrons within the one-sigma ellipse about the
bunch axis; the value ofρ(z) is then the ratio of electrons

1We have verified thatρ(z) is not very sensitive to the initial electron-
cloud average energy, up to 400 eV.
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Figure 2: The electron density enhancement functionρ(z)
for the PEP-II LER pumping sections. The normalization
is ρ(3σz/2) = 1. The straight line is a free-hand first-order
approximation.

at kick locationz relative to the number of electrons at the
head of the bunch. Fig. 2 shows the result. PEP-II parame-
ters used in the simulation are listed in Table 1.

The approximate linearity ofρ(z) is a consequence of
the parameter values used in the simulation. For higher val-
ues ofN the electrons get pulled in more quickly into the
bunch and remain temporarily trapped, leading to oscilla-
tory behavior ofρ(z). An analytic approach to this problem
is described in Ref. 5.

2 TUNE SHIFT

The electric fieldEe from the cloud leads to a neutral-
ization tune shift∆ν(n) which adds to the direct space-
charge tune shift∆ν(0). A simple estimate of∆ν(n) can
be obtained by making the approximation that the trans-
verse electron-cloud density is uniform within the bunch,
as it can be qualitatively seen in Fig. 1. Our simulations
show that, for nominal conditions, the kinetic energy does
not exceed∼ 8× 104 eV, hence the electrons can be sensi-
bly considered nonrelativistic. Thus the force on any given
positron due to the electron cloud is approximately trans-
verse and purely electric, and it is given by [6]

Fe = eEe =
4λ̄ρ(z)
a+ b

(x
a

i +
y

b
j
)

(2)

wherez is the longitudinal position of the positron. Insert-
ing Eqs. 1–2 into the standard expression [7] for a tune shift
yields

∆ν(n)
x (z) =

reLβ̄xbd̄

γ(a+ b)
ρ(z) (3)

wherere = e2/mc2 ' 2.82 × 10−15 m is the classical
electron radius,L is the aggregate length of the pumping

Table 1: Selected PEP-II parameters.

Circumference,C [m] 2200
Beam energy,E [GeV] 3.1
No. of particles per bunch,N 5.63× 1010

Aver. beta functions,̄βx = β̄y [m] 16
Aver. hor. beam size,̄σx [mm] 1
Aver. ver. beam size,̄σy [mm] 0.2
RMS bunch length,σz [cm] 1
Synchrotron tune,νs 0.03
Chamber semi-axes,(a, b) [cm] (4.5, 2.5)

sections,̄βx is the average beta function andγ is the usual
relativistic factor assumedÀ 1. A corresponding expres-
sion for∆ν(n)

y is obtained from the above by the simulta-
neous substitutionsa↔ b andx↔ y.

Choosing the central particle (z = 0) as a reference, us-
ing parameter values from Table 1, settingL = 1373 m
and d̄ = 4.1 × 105 cm−3 (obtained from separate simu-
lations [3]) and settingρ(0) = 5.5 from the linear fit in
Fig. 2, we obtain

∆ν̄(n)
x = 8.3× 10−3

∆ν̄(n)
y = 1.5× 10−2

}
central particle (4)

for the contribution from the pumping sections. Here the
bar overν is meant to emphasize that this tune shift, which
pertains to the central particle, also represents an average
tune shift over the bunch, on account of the approximate
linearity ofρ(z).

The neutralization tune shift of the particle at the head
of the bunch, which we denote with the subscript “h,” is
obtained from Eq. (3) by settingρ(zh) = 1,

∆ν(n)
h,x = 1.5× 10−3

∆ν(n)
h,y = 2.7× 10−3

}
head particle (5)

The above expressions and numerical values should be
compared with the direct space-charge tune shift of the cen-
tral particle,

∆ν(0)
x = − reβ̄xNC

(2π)3/2γ3σzσ̄x(σ̄x + σ̄y)
(6)

whereσ̄x and σ̄y are ring-averages of the rms beam sizes
andN is the number of particles per bunch. A correspond-
ing expression for∆ν(0)

y is obtained from the above by the
replacementx ↔ y. Substituting values from Table 1 we
obtain

∆ν(0)
x = −1.3× 10−4

∆ν(0)
y = −6.6× 10−4

}
central particle (7)



3 SYNCHROBETATRON COUPLING

Thez-dependence of the betatron frequency, given by

ωβ(z) = ωβ,0

(
1 + ∆ν(n)(z)

)
(8)

leads to synchrobetatron coupling. Hereωβ,0 is the nomi-
nal betatron frequency, and we have neglected∆ν(0) vis à
vis∆ν(n). For simplicity of the analysis we use a linear fit,
ρ(z) = ρ(0) − (ρ(0) − 1)z/zh. Settingz = z0 sinωst
we obtain a shifted and modulated betatron frequency,
ωβ(t) = ω′β (1− ε sinωst), where

ω′β = ωβ,0

(
1 + ∆ν̄(n)

)
(9a)

ε =
z0(ρ(0)− 1)∆ν(n)

h

zh(1 + ∆ν̄(n))
(9b)

The synchrotron angular frequencyωs is expressed in
terms of the synchrotron tunevia νs = ωs/ωβ,0. Thus
the betatron equation for the horizontal motion of a given
positron is, in the smooth-β approximation,

ẍ+ ω′2β (1− ε sinωst)
2
x = 0 (10)

We have numerically integrated Eq. (10). The Fourier
spectrum ofx(t), x̃(ω), exhibits characteristic peaks sep-
arated by∆ω = ωs, as shown in Fig. 3. We assumed
∆ν(n)

h = 2.7× 10−3, z0/σz = 1, andρ(0) = 5.5.
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Figure 3: Unnormalized absolute-value spectrum|x̃(ω)|.
The frequency shift of the central peak is given by Eqs. (4)–
(9a), and the sidebands are spaced byνs = 0.03. The
crosses are the values of|Jk(χ)| scaled to the main peak.

The relative height of the peaks in Fig. 3 can be under-
stood from an approximate analytic solution [8] of Eq. (10).
To orderεωs/ω′β , the spectrum is a series of delta func-
tions atω = ±ω′β + kωs for all integersk, with amplitude
proportional toJk(χ), whereJk(χ) is the ordinary Bessel
function of orderk and

χ =
εω′β
ωs

=
z0(ρ(0)− 1)∆ν(n)

h

νszh
= 0.32 (11)

4 DISCUSSION

Eq. (4) represents only the contribution from the pumping
sections; other regions of the ring will add to these num-
bers. In particular, the straight section IR2 and the wiggler
section, although relatively short compared to the circum-
ference, may develop a significant electron cloud density.

The electron cloud effectively provides a distortion of
the guide field in the ring, and hence of the optics. The
beta-function distortion and dispersion distortion scale as
∆β ∼ β∆ν(n)/ sin 2πν and ∆η ∼ η∆ν(n)/ sinπν, re-
spectively [7]. Hence these effects are small unless the tune
ν is close to an integer or half-integer.

The density functionρ(z), shown in Fig. 2, has higher-
order components beyond the linear, as evidenced by the
bump at the center. Therefore the synchrobetatron spec-
trum will, in general, be more complicated than what is
discussed above.

When a train of bunches is injected into the ring the elec-
tron cloud has vanishing density at the head of the train and
maximal density towards the tail. Therefore the tune shift
∆ν(n) will have a bunch-to-bunch variation along the train,
which will introduce further complications in the synchro-
betatron spectrum.

A more complete analysis describing the bunch average
of the single-particle spectrum shown in Fig. 3, including
the broadening effect from radiation damping, will be pre-
sented elsewhere [9].
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