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Abstract

We describe features of the soft-gaussian beam-beam simu-
lation code “TRS” and present sample results for the PEP-
II e+e− collider.

1 Description of the code

A basic experimental observation in e+e− colliders in stable
operation is that the particle distribution density at the
beam core is approximately gaussian, while the density at
large amplitudes (a few σ’s away from the center) is not
gaussian and is much larger than the extrapolation from a
gaussian fit to the core [1, 2].

The code TRS (Two-Ring Simulation) [3] is geared to
study the beam core of colliding e+e− beams. Although
it can be used to study large-amplitude tail distributions,
it is very inefficient at doing so, since the vast majority of
the CPU time is spent simulating the gaussian core. The
“engine” of this code is similar to that in other codes [4–7].
The code is written in FORTRAN 77, and is yet to be
documented in detail.

1.1 Simulation technique

In the simplest case each beam is represented by a single
bunch traveling in a separate, distinct ring and collisions
occur at only one interaction point (IP). The basic simu-
lation technique consists in tracking a given number (typ-
ically 1000–50000) of macroparticles per bunch and com-
puting, at every turn just before the collision, the centroids
〈x〉± , 〈y〉± and rms widths σx±, σy± of the distributions,
where the subscript +(−) refers to the e+(e−) beam. For
the purposes of computing the beam-beam interaction, the
code assumes that the transverse distribution of the kicking
bunch is gaussian, using the just-computed values of 〈x〉,
〈y〉, σx and σy in the Bassetti-Erskine formula [8] for the
electromagnetic field of a gaussian distribution. This for-
mula is then used to compute the kick on every macropar-
ticle of the opposing bunch. The role of the two colliding

∗Invited talk, to be published Proc. ICAP98, Monterey, California,
Sept. 14–18, 1998.
†Work supported by the US Department of Energy under contract

No. DE-AC03-76SF00098.
‡mafurman@lbl.gov

bunches is then reversed, completing the computation of
the beam-beam interaction.

Each macroparticle is then tracked through its corre-
sponding ring lattice, and the process is iterated for many
turns, typically corresponding to 3–5 damping times. An
aperture “lattice element” intercepts particles at large am-
plitude, and these are removed from the simulation.

The main output of the program is a file the with turn-
by-turn values of 〈x〉±, 〈y〉±, σx±, σy± and the remaining
number of macroparticles. Simple post-processors can then
compute the luminosity and the frequency spectra of 〈x〉±,
〈y〉±, σx± and σy±. The program can also output the x
and y projections of the time-averaged macroparticle dis-
tributions in binned form.

1.2 Other features

Nonzero bunch-length effects are taken into account by slic-
ing the bunch longitudinally, so that the beam-beam inter-
action is represented by several kicks [9] with prescribed
locations and weights. In the simplest case (thin-lens ap-
proximation) there is a single kick at the center of the
bunch. Typically, however, one uses a thick-lens approx-
imation with 5 or more kicks. In between two consecutive
kicks, the macroparticles undergo simple drifts as they pass
through the opposing bunch. The program only allows for
head-on collisions (zero crossing angle), although the cen-
ters of the beams are allowed to be offset.

The particle kinematics is fully 6-dimensional; how-
ever, the longitudinal component of the beam-beam kick
is wholly ignored, which is typically a good approximation.
The synchrotron motion of the particles can be chosen to
be parametric, i.e. an exact harmonic rotation with a spec-
ified synchrotron tune, or can be implemented with an RF
cavity kick plus a time-of-flight “lattice element” which is
a function of the (specified) momentum compaction factor.

The parameters of the two beams and the two rings are
fully independent of each other. The ring lattices can con-
tain arbitrary nonlinear thin elements, apertures, or linear
phase-advance maps. In typical applications, however, the
entire ring is represented by a simple linear map with spec-
ified tunes plus a rectangular aperture.

Radiation damping and quantum excitation are also rep-
resented by simple kick elements that typically act once per
turn. These elements are constructed so that, in the ab-
sence of the beam-beam interaction, the rms beam sizes
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σx± and σy± would reach specified values σ0x± and σ0y±
after many damping times, regardless of the initial condi-
tions.

Parasitic collisions can be included by an appropriate
lattice element whose strength depends on the parameters
of the opposing bunch.

The code can run in “weak-strong” mode, “strong-
strong” mode, or single-particle tracking mode. In the
weak-strong mode, one beam (the strong beam) is repre-
sented by a static gaussian lens (thin or thick) with speci-
fied, unchanging, σ’s, and the other beam (the dynamical,
or weak, beam) by a collection of dynamical macroparti-
cles. In strong-strong mode both beams are represented by
macroparticles whose distributions vary dynamically under
their mutual beam-beam interaction. Single-particle track-
ing mode is the same as weak-strong mode in which the
weak beam consists of a single particle. In this case the
output from the program is the turn-by-turn phase space
of this particle. This mode is used to study single-particle
resonance effects and to produce beam-beam footprints; it
has also proven valuable in debugging the code and in al-
lowing for basic comparisons with other codes and with
analytic results.

The code also offers choices of algorithms for the com-
putation of the complex error function, which enters the
Bassetti-Erskine formula. Typically we use a 3rd-order ta-
ble interpolation [10], but one can also use a 4th-order in-
terpolation, a Padé approximant [11], or the IMSL R© func-
tion CERFE [12]. Similarly, the program offers the choice
of several slicing algorithms to assign the locations and
weights of the kicks representing the long-bunch effects,
and also two algorithms for the computation of radiation
damping and quantum excitation effects.

1.3 Tests

The program has been systematically tested against ana-
lytic results in single-particle mode, and against other sim-
ilar simulation codes in their common region of applicabil-
ity [13,14]. In single-particle mode, the excellent agreement
with analytic results of the amplitude-dependent tune shift
validates the basic beam-beam force computation. In weak-
strong mode, minor disagreements with other codes can be
attributed to differences in details of the codes other than
the beam-beam computation.

1.4 Speed

In the typical case when the lattice is represented by a lin-
ear map, the CPU time used by the program is dominated
by the beam-beam computation. For a given run, the CPU
time scales according to

CPU time ∝ (no. of macroparticles/bunch)
×(no. of slices)×(no. of turns) (1)

A rough idea of the program speed is obtained from in-
formal benchmarks on three computers: in units of CPU-
sec/(macroparticle×slice×turn), the speed (or, rather, the
inverse speed) is 2.1× 10−5, 1.3× 10−5 and 8.7× 10−5 on
NERSC’s C90 Cray computer, on NERSC’s T3E computer
“mcurie” in single-processor mode, and on a Sun SPARC-
station 20, respectively. These numbers assume that the
beams collide once per turn, that both are represented by
the same number of macroparticles, and that the complex
error function is computed via a 3rd-order table interpola-
tion algorithm.

The above speeds are for strong-strong mode; in weak-
strong mode, the program runs roughly twice as fast, as it
should be expected.

1.5 Drawbacks

Although the gaussian approximation has the advantage of
simplicity, its accuracy relies on the assumption that the
core of the distribution is gaussian. However, it should be
kept in mind that, in certain cases, depending on the val-
ues of the tunes and the beam-beam parameters, coherent
single-bunch resonances can appear that distort the core
distribution significantly away from the gaussian shape. In
this case, obviously, the Bassetti-Erskine formula is not ex-
pected to be reliable. A more adequate solution is provided
by a PIC code in which the electromagnetic kick is com-
puted from the actual macroparticle distribution [15,16].

Nevertheless, the gaussian approximation is reliable in
many cases of practical interest. And, as shown in the ex-
amples below for PEP-II, even if the conditions are such
that a coherent resonance appears, the gaussian approxi-
mation behaves qualitatively differently from the “normal”
case, providing a signal that the gaussian approximation
should be suspect.

2 Application to PEP-II

The code TRS has been applied to the PEP-II collider to
obtain tune scans whose primary goal is to establish areas
in the tune plane with acceptable luminosity performance
[17]. For the purposes of this article we use a model of the
machine in which the rings are represented by linear arcs of
specified tunes, and parasitic collisions are ignored. Table 1
provides a basic parameter list used in the simulations. E is
the nominal beam energy, N is the number of particles per
bunch, the ξ0’s are the nominal beam-beam parameters, the
β∗’s and σ∗0 ’s are the optics functions and nominal beam
sizes at the interaction point (IP), respectively, the τ ’s are
the damping times, and the νs’s are the synchrotron tunes.

Fig. 1 shows the time evolution of the normalized rms
beam sizes for the tune values shown. The simulation was
run for 25000 turns, i.e., ∼ 3 e+ damping times, with 50000
macroparticles per bunch using 5 kicks for the bunch length
effects. The beam sizes start out being smaller than the
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Table 1: Basic PEP-II parameters.

e+ e−

E [GeV] 3.1 9.0
N [1010] 5.685 1.958
ξ0x 0.03 0.03
ξ0y 0.03 0.03
β∗x [cm] 50 50
β∗y [cm] 1.5 1.5
σ∗0x [µm] 153.0 153.0
σ∗0y [µm] 4.591 4.591
σz [cm] 1.0 1.0
νs 0.0334 0.0521
τx = τy [turns] 8366 5014

nominal sizes owing to the dynamical β effect [18], and the
beam blowup behavior is typical of incoherent resonance
effects.
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Figure 1: Time evolution of the normalized rms beam sizes
for split tunes.

Fig. 2 shows the spectra, in absolute value, of the hor-
izontal and vertical oscillations of the beam centroid for
both beams. The arrows indicate the tunes of the σ and
π modes computed in the rigid-gaussian small-amplitude
approximation, given by [19]
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Figure 2: Absolute value of the tune spectra, in arbitrary
units, of the centroid motions of the two beams for split
tunes. The spectra of the two beams almost exactly over-
lap. The arrows indicate the σ and π tunes computed from
Eqs. (2–4).

cos 2πν±, S± ≡ sin 2πν±, the ν’s are the tunes and the Ξ’s
are the coherent beam-beam parameters [20]. For exam-
ple, the horizontal coherent beam-beam parameter of the
positron beam is

Ξx+ =
reN−β∗x+

2πγ+Σx(Σx + Σy)
(4)

with corresponding expressions for Ξx− and Ξy±. Here re
is the classical electron radius, γ is the usual relativistic
factor and Σx = (σ∗2x+ + σ∗2x−)1/2 with a similar expression
for Σy.

The σ and π tunes shown by the arrows in Fig. 2 take
into account the equilibrium beam sizes in Eq. (4), obtained
from Fig. 1. The disagreement of νπ with the second peak
of the simulated spectra can be explained by the fact that
the bunches are not rigid but rather vary dynamically in
shape and size [21,22].

Fig. 3 shows the spectra of the rms beam sizes. The
signals of the synchrotron tunes, labeled νs±, are clearly
seen. Simulations not shown here indicate that, when the
tunes are slightly changed, the main peaks move at twice
the rate of change of the tunes [23].

If the tunes are chosen pairwise equal, a qualitatively
different result obtains. Fig. 4 shows the time evolu-
tion of the rms beam sizes for νx+ = νx− = 0.57 and
νy+ = νy− = 0.64. After a transition at ∼ 5000 turns,
corresponding to the damping time of the e− beam, the
vertical beam sizes of the two beams are locked together
and blow up to a larger value than in the split-tune case.
Another feature of the dynamics is shown in Fig. 5, in which
the normalized vertical beam sizes are plotted for only 20
consecutive turns. When the starting turn is 2000, the
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Figure 3: Absolute value of the rms beam size spectra in
arbitrary units for split tunes.

beam sizes are uncorrelated, while if the starting turn is
20000, the sizes are correlated and oscillate in phase with
period 3. These behaviors are typical of coherent beam-
beam resonances which can be studied in more quantitative
detail by other means, as discussed in Sec. 1.5. In practice,
a more realistic simulation of PEP-II requires the inclusion
of the parasitic collisions near the IP [17]. These collisions,
although relatively weak, are sufficiently strong to destroy
the coherent resonance condition, and the actual behavior
observed in the simulation is of the “normal” kind, i.e.,
dominated by incoherent effects, as in the split-tunes ex-
ample discussed earlier.
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Figure 4: Time evolution of the normalized rms beam sizes
for pairwise-equal tunes.
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Figure 5: Detail from Fig. 4: time evolution for 20 consec-
utive turns of the normalized vertical rms beam sizes. Top:
starting at turn 2000; bottom: starting at turn 20000.

3 Summary

We have summarized the main features of the beam-beam
simulation code TRS and presented two sample applica-
tions to the PEP-II collider. The code has been successfully
tested against analytic results and against other simulation
codes whenever such comparisons are meaningful.

The soft-gaussian approximation is believed to represent
reliably incoherent beam-beam effects. The code has been
used to perform studies for the PEP-II collider. For ex-
ample, simulated tune scans reveal undesirable operating
points due to beam blowup from synchrotron sidebands.
The dynamical beta effect, clearly seen in these simula-
tions, also influences the choice of a working point. The
code has been used to establish the adequate beam sepa-
ration at the parasitic collision points [24], and has been
applied to the proposed muon collider [25], including the
effects from the instability of the muon.

In some cases the code clearly reveals coherent behavior;
however, the soft-gaussian approximation is quantitatively
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unreliable in such cases, and other methods are called for.
Present improvement plans include allowing for nonlin-

ear maps to better represent the machine lattice, and for
collisions at a crossing angle.
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