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If a stored beam is kicked transversely by angle
Az’ (or is injected offset), its centroid betatron sig-
nal decoheres due to betatron tune spread. We define
q=z/o, and p = (azx + Bya’) /o, where ay, 8, and
o, are the lattice functions and rms beam size, re-
spectively, at the observation point (= kick point).
We assume: (1) the beam is Gaussian in (z,2’) and
in § = AE/Ep; (2) there is no a-y coupling and
no synchro-betatron coupling; (3) damping, quantum
excitation and the mutual interactions of the parti-
cles can be ignored; and (4) the tune dependence on
amplitude and energy offset is
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where v/ = chromaticity. Then the time evolution of
the beam centroid is [1,2]
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where n = turn number, 0 = 4run, Z = B, Ax' /o,
and the chromatic form factor F'(n) is
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F(n) = exp [—2( 6>251n2(7mu5)] (3)

where vs = synchrotron tune. The second moments
after the kick are
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The normalized rms size is 0.(n)/0.(0) = ({¢?) —
(g)*)1/2. Note that (¢2) + (p?) = 2 + Z? = constant.
The amplitude A = ({g) + (p)?)'/2 of the beam cen-
troid is
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Long after the kick, 6 > 1, the centroid am-
plitude decoheres as A ~ 672, while the rms
beam size approaches an equilibrium o, (c0)/0,(0) =
(14 22/2)""2.

As time elapses, F'(n) periodically comes back to
its peak value of unity. Therefore, if p = 0 (i.e.,
6 = 0), the beam centroid “recoheres” with the syn-
chrotron period. This effect provides a way [3] to
measure the product v'os (assuming vy < 1). If
1 # 0, the recoherence is still partially present.

The formulas above apply to 1-D. Extension to
2-D, including z-y coupling in the tune dependence
with amplitudes, is addressed in [4]. Ref. 5 treats the
decoherence phenomenon including synchrobetatron
coupling, damping and quantum excitation. Ref. 6
applies the canonical Hamiltonian perturbation for-
malism to 2-D decoherence in the presence of an arbi-
trary nonlinear tune dependence on amplitudes; this
formalism allows computing the decoherence rate of
a beam trapped in a resonant island. Ref. 2 presents
data on the dependence of decoherence rate on beam
intensity in the SLC (in particular, the dependence
on the sign of v/ through head-tail damping), while
Ref. 7 analyzes this effect using a two-particle model.
Experimental observation of head-tail damping at the
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TRISTAN MR is analyzed in Ref. 8. A full 3-D anal-
ysis is provided in Ref. 9, and is used as a tool to
measure the emittance in the TRISTAN ring.
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