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If a stored beam is kicked transversely by angle
∆x′ (or is injected offset), its centroid betatron sig-
nal decoheres due to betatron tune spread. We define
q ≡ x/σx and p ≡ (αxx+βxx

′)/σx where αx, βx and
σx are the lattice functions and rms beam size, re-
spectively, at the observation point (= kick point).
We assume: (1) the beam is Gaussian in (x, x′) and
in δ ≡ ∆E/E0; (2) there is no x-y coupling and
no synchro-betatron coupling; (3) damping, quantum
excitation and the mutual interactions of the parti-
cles can be ignored; and (4) the tune dependence on
amplitude and energy offset is

ν = ν0 − µ(q2 + p2) + ν′δ (1)

where ν′ = chromaticity. Then the time evolution of
the beam centroid is [1, 2]
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where n = turn number, θ = 4πµn, Z = βx∆x′/σx
and the chromatic form factor F (n) is
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where νs = synchrotron tune. The second moments
after the kick are〈q2〉
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− 3 tan−1 2θ (5)

The normalized rms size is σx(n)/σx(0) = (〈q2〉 −
〈q〉2)1/2. Note that 〈q2〉+ 〈p2〉 = 2 + Z2 = constant.
The amplitude A = (〈q〉2 + 〈p〉2)1/2 of the beam cen-
troid is

A(n) =
ZF (n)
1 + θ2

exp
(
− Z2θ2

2(1 + θ2)

)
(6)

Long after the kick, θ À 1, the centroid am-
plitude decoheres as A ∼ θ−2, while the rms
beam size approaches an equilibrium σx(∞)/σx(0) =(
1 + Z2/2

)1/2.
As time elapses, F (n) periodically comes back to

its peak value of unity. Therefore, if µ = 0 (i.e.,
θ = 0), the beam centroid “recoheres” with the syn-
chrotron period. This effect provides a way [3] to
measure the product ν′σδ (assuming νs ¿ 1). If
µ 6= 0, the recoherence is still partially present.

The formulas above apply to 1-D. Extension to
2-D, including x-y coupling in the tune dependence
with amplitudes, is addressed in [4]. Ref. 5 treats the
decoherence phenomenon including synchrobetatron
coupling, damping and quantum excitation. Ref. 6
applies the canonical Hamiltonian perturbation for-
malism to 2-D decoherence in the presence of an arbi-
trary nonlinear tune dependence on amplitudes; this
formalism allows computing the decoherence rate of
a beam trapped in a resonant island. Ref. 2 presents
data on the dependence of decoherence rate on beam
intensity in the SLC (in particular, the dependence
on the sign of ν′ through head-tail damping), while
Ref. 7 analyzes this effect using a two-particle model.
Experimental observation of head-tail damping at the
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TRISTAN MR is analyzed in Ref. 8. A full 3-D anal-
ysis is provided in Ref. 9, and is used as a tool to
measure the emittance in the TRISTAN ring.
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