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Definition When two bunches (+ and −) having
N± particles and distributions ρ±(x, t) (normalized
by
∫
d3xρ±(x, t) = N±) collide, the single-collision

luminosity Lsc is defined as the number of reaction
events produced per unit reaction cross section, and
is given by the overlap integral [1]

Lsc =
1
c

∫
d3xdt ρ+(x, t)ρ−(x, t)

×
√
c2(v+ − v−)2 − (v+ × v−)2 (1)

where v+(v−) is the common velocity of all the parti-
cles in bunch +(−). Eq. (1) is a relativistic invariant,
has dimensions of 1/area, and is valid for arbitrary
velocities v±. (Generalization to the case when the
velocity distributions are not homogeneous is given
in Ref. 2.)

For a storage ring collider with bunch spacing
sB , bunches collide periodically with frequency fc =
βc/sB . For a linear collider, fc = (repetition
rate)×(number of bunches per bunch train). The
peak luminosity is given by L = Ṅ/σ = fcLsc [3].
It is traditionally expressed in cgs units, cm−2s−1.

Table 1 gives expressions for L in various situa-
tions for head-on collisions and σz small compared to
β∗x, β

∗
y . These expressions are valid even with nonzero

dispersion at the IP, unless otherwise noted. For
initial estimates using Tab. 1, we use the nominal
emittances and beam sizes, but these nominal values
generally change with the beam-beam force and the
luminosity should be modified accordingly [4].

In the y plane, the beam-beam tune shift param-
eter of an on-axis particle in the positron beam due
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to its interaction with the opposing beam is

ξy,+ =
reN−β∗y,+

2πγ+σ∗y,−(σ∗x,− + σ∗y,−)
(2)

Expressions for the remaining tune shift parameters
are obtained by x↔ y and/or +↔ −.

Transparency symmetry In a two-ring e+e− col-
lider, beam parameters need not be identical in both
rings. To restrict the available parameter space, it
has been suggested [5–7] that parameters be cho-
sen to mimic the situation in a symmetric collider.
The “transparency” conditions commonly adopted
by designers of two-ring colliders include: (i) pair-
wise equality of beam-beam tune shift parameters
(ξx,+ = ξx,−; ξy,+ = ξy,−); (ii) pairwise equality of
beam sizes (σ∗x,+ = σ∗x,−; σ∗y,+ = σ∗y,−); (iii) equality
of tune modulation amplitudes associated with syn-
chrotron oscillations ((σzνs/β∗x,y)+ = (σzνs/β∗x,y)−;
and sometimes (iv) equality of radiation damping
decrements for the two rings.

Optimal coupling Choosing parameters such that
all four beam-beam parameters are equal is called
“optimal coupling.” This case requires [4, 5](

σ∗y
σ∗x

)
+

=
(
σ∗y
σ∗x

)
−

=
(
β∗y
β∗x

)
+

=
(
β∗y
β∗x

)
−

=
(
εy
εx

)
+

=
(
εy
εx

)
−
≡ r (3)

Alternative expressions Because the luminosity
in a circular collider is limited by the value of the
ξ, it is useful to write L explicitly in terms of ξ as
seen in the third row of Tab. 1. Here E and I
are the beam energy and total beam current in one
ring and K = 1/(2e3) = 1/(2eremec

2). With E in
GeV, I in A, β∗y in cm, and L in cm−2s−1, we have
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Table 1: Head-on luminosity expressions for short upright gaussian bunches.

Expression for L Conditions for validity

N+N−fc

2π
√

(σ∗2x,+ + σ∗2x,−)(σ∗2y,+ + σ∗2y,−)
general

N+N−fc
4πσ∗xσ∗y

σ∗x,+ = σ∗x,− ≡ σ∗x, σ∗y,+ = σ∗y,− ≡ σ∗y

K(1 + r)ξy

(
EI

β∗y

)
+,−

σ∗x,+ = σ∗x,− ≡ σ∗x, σ∗y,+ = σ∗y,− ≡ σ∗y ,
ξx,+ = ξx,− ≡ ξx, ξy,+ = ξy,− ≡ ξy

K(1 + r)
(
ξ
EI

β∗y

)
+,−

σ∗x,+ = σ∗x,− ≡ σ∗x, σ∗y,+ = σ∗y,− ≡ σ∗y ,
ξx,+ = ξy,+ ≡ ξ+, ξx,− = ξy,− ≡ ξ−

Nfcγξ

r0β∗

σ∗x,+ = σ∗x,− = σ∗y,+ = σ∗y,−,
β∗x,+ = β∗x,− = β∗y,+ = β∗y,− ≡ β∗,
N+ = N− ≡ N, E+ = E− ≡ E

N2fc
4πεβ∗

εx,+ = εx,− = εy,+ = εy,− ≡ ε,
β∗x,+ = β∗x,− = β∗y,+ = β∗y,− ≡ β∗,
N+ = N− ≡ N, E+ = E− ≡ E,
D∗x,± = D∗y,± = 0

πfcγ
2εxξxξy(1 + r)2

r20β
∗
y

εx,+ = εx,− ≡ εx, σ∗y,+ = σ∗y,−,
β∗x,+ = β∗x,− ≡ β∗x, β∗y,+ = β∗y,− ≡ β∗y ,
N+ = N− ≡ N, E+ = E− ≡ E,
D∗x,± = 0

K = 2.17× 1034. The symbol ( )+,− means that the
enclosed parameters may be taken from either beam,
on account of the transparency conditions.

For a linear collider,

L =
H

4πE
N

σ∗x

P

σ∗y
(4)

where H is the pinch enhancement factor, N = N+ =
N− and P is the average beam power. The factor
N/σ∗x determines the number of beamsstrahlung pho-
tons emitted (constrained by background considera-
tions); the factor P/σ∗y represents the major techni-
cal challenge—providing high beam power and very
small bunch size.

Reductions to luminosity When σz >∼ β∗, the
loss in luminosity due to geometrical (hourglass) ef-
fect for Gaussian beams is [8]

R(tx, ty) ≡
L
L0

=

∞∫
−∞

dt√
π

exp(−t2)√
(1 + t2/t2x)(1 + t2/t2y)

(5)

with

t2x =
2(σ∗2x,+ + σ∗2x,−)

(σ2
z,+ + σ2

z,−)
(
σ∗2x,+/β

∗2
x,+ + σ∗2x,−/β

∗2
x,−
)

and correspondingly for ty. The nominal luminosity,
L0, is that represented by Tab. 1. See Fig. 1 [8].

Another reduction factor comes from a non-zero
horizontal crossing angle. For the symmetric-collider
case with σ∗y ¿ σ∗x we obtain [9]

RL ≡
L
L0

=

√
2
π
aebK0(b) (6)

a =
β∗y√
2σz

, b = a2

[
1 +

(
σz
σ∗x

tanφ
)2
]

(7)

where K0 is a Bessel function and φ is half the cross-
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Figure 1: Hourglass reduction factors, Eq. (5).

ing angle. When σz ¿ β∗y , Eq. (6) reduces to [2]

RL =

[
1 +

(
σz
σ∗x

tanφ
)2
]−1/2

(8)

If the beams are, in addition, offset transversely by
δx and δy, Eq. (8) acquires an extra factor of

exp

{
− (δx/2)2

σ∗2x cos2 φ+ σ2
z sin2 φ

−
(
δy

2σ∗y

)2
}

(9)

Optimization of the average luminosity Fol-
lowing injection, the luminosity decays in time due
to particle losses from various sources. If it takes a
time tf to refill the beams, during which time the
beams are not colliding, one often wants to deter-
mine the length of the luminosity run tc that leads
to the largest average luminosity. If we make the
approximation L(t) = L0 exp(−t/τ) where τ is the
characteristic lifetime, then the average luminosity is
given by1

〈L〉 = 1
tc + tf

tc∫
0

dtL(t) = L0τ
1− e−tc/τ
tc + tf

(10)

If tf is independent of the number of particles left
in the machine at the end of the luminosity run, the
equation for tc that maximizes 〈L〉 that follows from
(10) is [10]

ex = 1 + x+ a (11)
1The exponential decay is a convenient approximation; for

a more detailed analysis see M. S. Zisman, Sec. 3.4.1.

where x = tc/τ and a = tf/τ . Given a, this equation
can be readily solved numerically by iteration. An
approximate expression for the solution is

x ' log
(
1 +
√

2a+ a
)

(12)

whose relative error is at most ∼ 7%, and this worst
case occurs for a ' 1.1. Thus, if the condition (11) is
satisfied, the maximum average luminosity is

〈L〉max = L0e
−x ' L0

1 +
√

2a+ a
(13)

If the filling time does depend on the number of
particles left in the machine at the end of the lumi-
nosity run, the optimal condition is, of course, more
complicated [10], although a similar analysis is appli-
cable.

Integrated Luminosity In most experiments, it is
the integrated luminosity that serves as the figure of
merit for a collider. To account for down time, injec-
tion, beam lifetimes, etc., one experimental “year”
is taken by convention to be 107 s. Then, the ex-
pected integrated luminosity for a collider delivering
a peak luminosity of L = 1 × 1033 cm−2s−1 would
be Li = 1× 1040 cm−2 or 10 fb−1 (1 b≡ 10−24 cm2).
Figs. 2, 3 and 4 show the luminosity history of CESR,
SLC and TEVATRON (note that the scales are dif-
ferent in the three cases; also, CESR and the the SLC
use different definitions of peak luminosity).
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Figure 2: Peak luminosity history of CESR.

Monochromatization scheme Recent designs
for τ -charm factories call for a “monochromatization
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Figure 3: Peak luminosity of the SLC. Data for 1989
and 1990 were taken with the Mark II detector, sub-
sequent data with the SLD. Data from a short run in
1995 is combined with a long run in 1994.

option” with large y dispersion such that D∗y,+ =
−D∗y,−. This choice induces a correlation between
the y position of the particles and their energy in
such a way that e+’s with higher-than-average en-
ergy preferentially collide with e−’s with lower-than-
average energy and vice versa, so that the energy
spread of the c.m. of any given colliding e+e− pair
is effectively reduced relative to the standard (zero
dispersion) case, hence the name “monochromatiza-
tion” [11]. The purpose of this scheme is to enhance
the production of narrow resonances such as the J/ψ,
whose width-to-mass ratio, Γ/mc2 = 2.8 × 10−5, is
small compared to the energy spread of the beam,
typically σδ ∼< 10−3. The improved energy resolu-
tion also allows detailed measurement of thresholds
and branching rates in the e+e− c.m. energy range
w = 3− 5 GeV [13,14].

Since the production cross-section σ(w) for the pro-
cess e+ + e− → J/ψ near resonance has a significant
variation as a function of w, the energy distributions
of the particles in the beams are important, and the
event rate is not given by Lσ but rather by

Ṅ =

∞∫
0

dwΛ(w)σ(w) (14)

where Λ(w) is the “differential luminosity” [13].
Λ(w) is given by Eq. (1), except that the distri-

butions ρ± must be augmented to include the de-
pendence on E+ and E− of the colliding e+e− pair.
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Figure 4: Luminosity history of the TEVATRON.

The overlap integral is carried out subject to the
constraint of fixed w ' (4E+E−)1/2. If the two
beams have the same central energy E0 and the dis-
persions at the IP satisfy D∗y,+ = −D∗y,− ≡ D∗y,
D∗x,+ = −D∗x,− = 0, then for short gaussian bunches
[13],

Λ(w) =
L0√
2πσw

e−λ
2(w−2E0)

2/2σ2
w (15)

where σw =
√

2σδE0 and λ is the “monochromatiza-
tion factor”

λ =

√
1 +

(D∗yσδ)2

β∗yεy
(16)

In Eq. (15) L0 is the luminosity in the absence of
dispersion. The factor λ is chosen to be large, λ ∼ 10.
Therefore, the c.m. energy resolution is σw/λ¿ σw.

The luminosity is L =
∫∞
0
dwΛ(w) = L0/λ, which

is ¿ L0. In fact, the resonant production rate is
not reduced; only the nonresonant background is re-
duced by the λ-factor, so that the monochromatiza-
tion scheme enhances the relative resonance produc-
tion over background by a factor of λ. To see this, let
σ(w) = B+Aδ(w−mc2) with A ∝ Γ the area under
the resonance and B the nonresonant background; we
get

Ṅ =
L0B

λ
+
L0A√
2πσw

(17)

The factor λ decrease in the nonresonant luminos-
ity can be recovered by increasing ξy or ξx or N (see,
e.g., any entry except the 6th in Table 1).

If the monochromatization conditions are subject
to small errors and λÀ 1, the perturbed factor λ′ is
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given by [15]

1
λ′2

=
1
λ2
×[

1 +
∆σ∗y0
σ∗y0

+
∆D∗y
D∗y

+
λ2

4

(
∆D∗y
D∗y

)2
]

(18)

where σ∗y0 = (β∗yεy)
1/2.

In the initial proposal of the monochromatization
scheme [11], the vertical dispersion was supposed to
be achieved with electrostatic separators, which nat-
urally pull the beams in opposite directions. More
recent multibunch “factory” designs call for sepa-
rate rings for the two beams, and therefore other
options become available such as electrostatic skew-
quadrupole magnets [12] owing to the decoupled op-
tics of the two rings. The lattice design must be
flexible in order to accommodate the standard as
well as the monochromatization configurations. The
usual “factory-like” constraints arising from multi-
bunch operation must be met, such as adequate ra-
diation protection in the interaction region, prompt
beam separation, acceptable level of background in
the detectors, etc. The optics must provide for low
emittance and the beam-beam parameter is chosen
in the traditional range 0.03 − 0.05. In addition to
these standard requirements, of course, the disper-
sion at the IP must be nonzero, and is typically cho-
sen in the range D∗y = 0.3 − 0.5 m [13, 14, 16]. The
combination of these constraints and the beam-beam
effect [17] strongly suggest that the beta-functions at
the IP must satisfy β∗x ¿ β∗y , which is opposite from
the standard case.
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