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Abstract

We carry out a methodical comparison among the four beam-beam codes TRS, BBTRACK3D, LIFE-
TRAC and TAIL under a restricted set of conditions for which such a comparison is meaningful. We first
study the convergence rate of five slicing algorithms as the number of kicks goes to infinity and provide
a criterion for the minimum number of kicks required for acceptable accuracy in a given situation. We
then focus on turn-by-turn single particle tracking in 6-dimensional phase space in weak-strong mode
for a thick-lens beam-beam interaction in the absence of damping and quantum excitation effects and
lattice nonlinearities. When the codes make use of the the same thick-lens slicing algorithm, the results
agree within computer accuracy. We also compute the tune shift with amplitude and compare the results
with those from the first-order analytic calculation. The agreement is surprisingly good except when
synchrotron sidebands are prominent. We then go on to include damping and quantum excitation and
compute the 2-D particle distributions out to reasonably large amplitudes. The results, which we show
in the form of contour level plots, agree within the statistical accuracy of the calculations. This article
summarizes Ref. [1].
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1 Introduction.

It is sometimes apparent that beam-beam simulations do not enjoy the same degree of respectability in
today’s accelerator physics community that other tools, such as single-particle tracking, do. One often
hears, for example, that beam-beam simulations are better able to explain observed phenomena a posteriori
rather than to predict them. Undoubtedly, the fundamental reason for this state of affairs is the complexity
of the beam-beam interaction. A complete calculation would require the solution of Maxwell’s and Newton’s
equations simultaneously for many billions of particles for millions of turns. It is clear that such a task is
impossible with computers that are available today or that will be in the foreseeable future.

Nevertheless, much is known qualitatively and quantitatively about the beam-beam interaction in various
regimes, and several codes have been developed that embody different approximations. Although the ultimate
test of any beam-beam code is the correct and complete prediction of collider beam dynamics, it seems
important for the time being to compare these codes with each other and with analytical results, and ensure
that there is agreement whenever these comparisons are meaningful.

At its core, many of these codes have a common element: a thin-lens kick produced by a gaussian particle
distribution. In this note we carry out a comparison among four beam-beam codes that involve this thin-lens
kick. We start with the simplest case, namely the turn-by-turn tracking of a single particle colliding once per
turn against an opposing gaussian bunch, and we compare the six-dimensional coordinates of the particle
at every turn, in the absence of radiation damping, quantum excitation and lattice nonlinearities. We carry
out the comparison for thin-lens and thick-lens beam-beam interaction, for five “slicing” algorithms, with or
without synchrotron oscillations, for several initial conditions (but not in all possible combinations). When
the codes do the same thing, the results indeed agree with each other within computer precision. We also
compare the results for the calculated tune shift with amplitude with analytical results for the case of a
thin lens. In the final step, we carry out a longer term simulation and produce the two-dimensional particle
distribution in amplitude space with three of the codes. The agreement is very good, and the relatively small
discrepancies are likely due to the difference in the algorithms used at this stage of the comparisons.

In all calculations presented here we use the “weak-strong” description of the beam-beam interaction. In
this scheme the “strong” beam is passive and is represented by a gaussian lens (thin or thick) that is not
altered by the other beam. The “weak” beam is dynamical, and we observe its behavior as a function of
time as it collides repeatedly against the strong beam. In most, but not all, of the simulations carried out
here, we use beam parameters that correspond closely to the PEP-II B factory [2], in which the electron
beam plays the role of the strong beam and the positron that of the weak.

The four beam-beam codes we consider here are: TRS [3], LIFETRAC [4], TAIL [5] and BBTRACK3D
[6]. The code TRS is a multiparticle strong-strong code that involves the soft-gaussian approximation. It
is geared to assessing the luminosity performance of an e+e−collider. The codes LIFETRAC and TAIL
are single-particle weak-strong codes geared to assessing the beam lifetime. The code BBTRACK3D is a
single-particle weak-strong code geared to studying the dynamics of a single particle with specified initial
conditions. Among its options, it allows different forms for the particle density of the strong beam, the
gaussian being only one of them.

2 Slicing algorithms.

We assume that the longitudinal distribution of the opposing bunch is described by a gaussian density

ρ̂`(z) =
e−z

2/2σ2
z

√
2πσz

(1)

where the caret “ˆ” is meant to emphasize unit normalization. For the purposes of tracking simulations, we
replace this density by a weighted superposition of Ns delta functions,

ρ̂`(z)→ ρ̂s(z) ≡
L∑

k=−L
wkδ(z − zk) (2)
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where Ns ≡ 2L + 1 (we assume, as is customary, that Ns is an odd integer; if this is not the case, our
calculation needs slight modifications). Each delta function gives rise to a kick at a location zk weighted
by wk; these locations and weights must be determined according to a certain algorithm. The symmetry
ρ̂`(−z) = ρ̂`(z) implies that the kick locations and weights must obey the basic constraints z−k = −zk and
w−k = +wk. In addition, we require that the accumulated effects of the kicks should be the same as in the
original distribution, i.e.,

∫
dzρ̂`(z) =

∫
dzρ̂s(z) = 1, which implies

L∑
k=−L

wk = 1 (3)

For the thin-lens case (Ns = 1) there is a single kick at the center of the bunch with z0 = 0 and w0 = 1.
For the thick lens case, on the other hand, there is, of course, an infinite number of possible algorithms to
decide the weights and locations of the kicks consistent with the basic constraints. Here we examine only
five possibilities. For the case Ns = 5 we list the kick locations and weights for all five algorithms in Table 1.

Algorithm #1 (equal spacing). In this case [7] the kicks are equally spaced and the weights are
proportional to the gaussian density at zk, namely

zk
σz

=
2k

Ns − 1

(
1 +

Ns − 3

12

)
, wk =

ρ̂`(zk)
L∑

m=−L
ρ̂`(zm)

(k = 0, ±1, · · · , ±L, Ns ≥ 3) (4)

Algorithm #2 (equal areas). In this case the gaussian distribution (1) is divided up into Ns “slices”
of equal area (implying equal charge), and the kicks are located at the center of charge of each slice. The
equality of the area of the slices implies that the weights are all equal, namely wk = 1/Ns. Standard formulas
for the area under a gaussian curve imply that the kick locations are given by

zk
σz

=
√

2 erf−1

(
2k

Ns

)
(k = 0, ±1, · · · , ±L, Ns ≥ 3) (5)

Algorithm #3. This case [8, 9] is similar to the previous one, except that the kick locations are given
by

zk
σz

= Ns [ρ̂`(lk)− ρ̂`(lk+1)] , k = 1, · · · , L (6)

where the lk’s are the edges of the slices. By arguments similar to those in the previous case, it is easy to
see that, for k > 0,

lk
σz

=
√

2 erf−1

(
2k − 1

Ns

)
(k = 1, 2, · · · , L+ 1, Ns ≥ 3) (7)

For k < 0, the lk’s are the mirrors of those for k > 0 (note that there is no k = 0 edge, and that the
k = ±(L + 1) edges are at ±∞). As in all cases, the central kick is at z0 = 0, and the kicks for k < 0 are
symmetrically located with respect to those for k > 0. The weights are the same as in the previous case,
namely wk = 1/Ns.

Algorithm #4. This is a modified combination of algorithms #1 and #3 in which

zk
σz

=
1

wk
[ρ̂`(lk)− ρ̂`(lk+1)] , k = 1, · · · , L (8)

where the lk’s are the same as above, and where the locations for k < 0 are the mirror images of those for
k > 0. The weights are proportional to

√
ρ̂`(z), namely

wk =

√
ρ̂`(zk)

L∑
m=−L

√
ρ̂`(zm)

(k = 0, ±1, · · · , ±L, Ns ≥ 3) (9)

3



    

In practice, the zk’s and wk’s are most easily found by iteration. It turns out that, of all five slicing
algorithms described here, this algorithm #4 has the fastest rate of convergence as Ns → ∞ (see the
discussion below).

Algorithm #5. This algorithm consists of choosing the zk’s and wk’s in such a way that the area
enclosed by the two functions

∫ z
0
dz′ρ̂`(z′) and

∫ z
0
dz′ρ̂s(z′) is minimal. This requirement leads to a set of

nonlinear equations for the zk’s and wk’s which, as in algorithm #4, is most easily solved by iteration.

Table 1: Kick locations and weights for Ns = 5.

Algorithm #1 Algorithm #2 Algorithm #3 Algorithm #4 Algorithm #5
–1.166667 –1.281552 –1.399809 –1.59898 –1.44156
–0.5833333 –0.5244005 –0.5319032 –0.67872 –0.63623

zk’s 0.0 0.0 0.0 0.0 0.0
0.5833333 0.5244005 0.5319032 0.67872 0.63623
1.166667 1.281552 1.399809 1.59898 1.44156
0.1368561 0.2 0.2 0.17350 0.14943
0.2280002 0.2 0.2 0.23222 0.22577

wk’s 0.2702873 0.2 0.2 0.26056 0.24960
0.2280002 0.2 0.2 0.23222 0.22577
0.1368561 0.2 0.2 0.17350 0.14943

Convergence rate of the five slicing algorithms. A reasonable requirement for any given algorithm
is that the results should converge to a limit as Ns → ∞. A reasonable requirement for all algorithms is
that they should converge to the same answer in this limit. It remains an open problem to establish the
optimal thick-lens slicing algorithm among the infinite number of possibilities. By “optimal algorithm” we
mean that which yields, for a given finite number of kicks, the closest answer to the Ns = ∞ limit for a
particular problem. This is clearly a very difficult problem: one cannot even set forth a universal criterion
for such an optimization because such a criterion necessarily depends on many variables of the problem at
hand, such as the working point, beam aspect ratios, etc.

In this section we try to solve a more modest problem: we study the convergence rate of the five slicing
algorithms presented above as the number of kicks Ns → ∞. Although this is clearly a more restricted
problem than the one stated in the previous paragraph, the answer is still quite interesting because it shows
clear systematics. As we show below, algorithm #4 emerges as the clear favorite among the five. Within this
limited context, we also give an answer to the important practical question of how many kicks are enough
for a given situation.

We proceed as follows: we first generate a weak bunch of 1,000 particles distributed gaussianly in the
6-D normalized phase space (X1, . . . , X6) ≡ (x/σx+, x

′/σx′+, y/σy+, y
′/σy′+, z/σz+, ∆p/σp+) where the

subscript “+” is meant to emphasize that this is the weak (positron) beam. The coordinates are generated
in an uncorrelated fashion, so that we may think of the distribution as that corresponding to a gaussian beam
matched to the bare lattice at the IP. We then push this distribution once through the thick beam-beam
lens produced by the strong beam for a given slicing algorithm and for a given number of kicks, and compare
the resultant distribution with the one obtained by pushing the same initial distribution according to the
“Ns = ∞” case which, for practical purposes, we define to be algorithm #4 with 300 kicks. Note that our
criterion does not depend on any lattice parameter; it is designed to judge the beam-beam interaction by
itself, as an isolated entity.

We compare the algorithms quantitatively by defining a dimensionless parameter Q for each algorithm
as the sum of the rms deviations of the four transverse phase space coordinates of the final distribution from
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those obtained from the Ns =∞ case,

Q =

4∑
n=1

√
〈(Xn −Xn,∞)2〉 (10)

where 〈· · ·〉 is the average over the 1,000 particles. Obviously, the smaller is Q the better is the slicing
algorithm. We present here only one case, corresponding to a flat beam with PEP-II-like parameters [2],
listed in Table 2. Other cases, with qualitatively similar results, are described in Ref. [1].

Table 2: Parameters for the convergence rate tests.

β∗x+/σz+, β∗y+/σz+ 37.5, 1.5
β∗x−/β

∗
x+, β∗y−/β

∗
y+ 1.333, 1.333

σx−/σx+, σy−/σy+, σz−/σz+ 1, 1, 1
σx−/σy− 25
ξx+, ξy+ 0.03, 0.03

Figure 1 shows the results of plotting Q vs.the number of kicks Ns for the five algorithms. It is apparent
that algorithm #4 has systematically the fastest convergence rate of the five. It is curious that algorithm
#1 does not converge uniformly, although it becomes competitive with #4 for ∼> 50 or more kicks.

Figure 1: Convergence of the slicing algorithms: Q plotted vs. number of kicks Ns
for flat beams (PEP-II-like parameters; see Table 2).

A criterion for the adequate number of kicks. It is important to decide how many kicks are enough
for a given problem because, all other things being equal, the CPU time used in the calculation is proportional
to Ns. We now provide a criterion for the minimum value required for Ns for issues pertaining to the beam
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core (such as the beam blowup due to the beam-beam interaction, or, equivalently, the luminosity). The
reasoning is as follows: due to the effects of radiation damping and quantum excitation, the rms beam size
in the transverse dimension fluctuates by

δσ

σ
' 1√

τ
(11)

where τ is the damping time (in units of turn number) corresponding to the dimension considered. Because
of these fluctuations, it is not justified to increase the accuracy of the beam-beam element beyond that
corresponding to a value of Q given by

Q ' 4√
τ

(12)

(the factor 4 accounts for the four terms in Eq. (10)). Thus once we know the convergence rate of a given
algorithm, the criterion is the following: the minimum value of Ns that gives the correct answer (within the
statistical accuracy of the calculation) is that for which Q takes on the value given by Eq. (12).

For the case of PEP-II, with τ = 5400, this yields Q ' 0.05. Therefore, as one can see from Fig. 1, any of
the five algorithms gives the correct answer for Ns = 3. For other situations there are big differences in the
number of slices required by each algorithm to converge to a result with a given accuracy [1]. Nevertheless,
algorithm #4 has consistently the fastest convergence rate among the five possibilities shown here.

3 The thick lens beam-beam interaction.

In all cases described in this article we make the following assumptions: (a) The particles are relativistic so
that we can neglect their self-interactions. (b) The bunch is sufficiently short that there are no nontrivial
lattice elements at the IP in a region of size comparable to the bunch length. (c) There is no dispersion in
this region around the IP. (d) There is no closed orbit distortion of the strong beam, intentional or accidental.
(e) There are no phasing errors and no collective oscillations, longitudinal or transverse.

As the particles in the weak beam move through the strong beam, they encounter the Ns kicks in
sequence. For each kick there are four steps (listed below) that describe the algorithm for the beam-beam
kick experienced by a given particle in the weak beam. These four steps are repeated for each slice and must
be carried out in the actual sequence of kicks encountered by the particle. When the weak beam consists
of many particles, which is the generic case in the code TRS, one also has to repeat all these steps for all
particles.

The four steps for a single kick are the following:
Step 1: Determine the collision point. As a consequence of the assumptions listed above, the

bunch centers come together at the nominal (optical) IP. Thus we assume that they move towards each
other according to s± = ±ct, so that time t = 0 corresponds to the instant of the central collision. If
z+ is the longitudinal position of the positron and z− that of the electron slice (both measured relative to
their respective bunch centers), then the azimuthal coordinates of the colliding positron (s+) and opposing
electron slice (s−) at time t are

positron: s+ = ct+ z+; electron slice: s− = −ct− z− (13)

(we take the convention that z > 0 means the head of the bunch regardless of its direction of motion). The
collision point between the positron and the opposing slice is determined by setting s+ = s− ≡ sc, which
implies

collision point: sc = 1
2 (z+ − z−) (14)

Step 2: Determine the transverse coordinates. In all codes considered here the longitudinal as
well as the transverse coordinates of the particles are referred to the bunch center. Since the beam-beam
kick is represented by a thick lens whose strength varies during the course of the collision (due to the s
dependence of the transverse size of the opposing bunch), we have to find the actual transverse coordinates
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of the colliding particle. As a consequence of the assumptions listed above, the transformation from the
bunch center to the actual collision point is a simple drift:

x→ x+ scx
′, y → y + scy

′ (15)

while the slopes x′ and y′ remain unchanged.
Step 3: Actual kick. In this step the slopes of the particle are changed according to

x′ → x′ + ∆x′ (x, y, σx−(sc), σy−(sc)) , y′ → y′ + ∆y′ (x, y, σx−(sc), σy−(sc)) (16)

while x and y remain unchanged. In computing ∆x′ and ∆y′ we use x and y from Step 2 and the actual
beam sizes of the opposing bunch at the collision point, given by

σx−(sc) = σx−(0)×
√

1 +
(
sc/β∗x−

)2
, σy−(sc) = σy−(0)×

√
1 +

(
sc/β∗y−

)2
(17)

In all calculations discussed here we assume that the transverse distribution of the strong bunch is
gaussian. Thus a particular slice of electrons centered at the origin and having horizontal and vertical rms
sizes (σx−, σy−) is described by the transverse particle density

ρt(x, y) =
∆N−

2πσx−σy−
exp

(
− x2

2σ2
x−
− y2

2σ2
y−

)
(18)

which is normalized to the number of electrons ∆N− contained in the slice (for the k-th slice, ∆N− = wkN−,
where N− is the total number of electrons in the bunch).

The electromagnetic kick (∆x′, ∆y′) received by a positron from a thin-slice electron bunch is written
in concise form [10, 11] in terms of the complex error function w(z)1 In tracking codes it is important to
compute this function as fast as possible because this is the most CPU-intensive part of any beam-beam
simulation that assumes a transverse gaussian shape for the bunches. In Ref. [1] we describe four methods
of computing w(z). They all yield results that are accurate to better than 1 part in 106. However, there are
major differences in the computational speed of the different methods; we shall not address this issue here.

Step 4: Restore the coordinates to the reference point. This is the inverse of Step 2, namely

x→ x− scx′, y → y − scy′ (19)

while the slopes x′ and y′ remain unchanged.
Steps 2 and 4 do not cancel each other out because the slopes have changed in Step 3; therefore, in

general, the beam-beam kick alters the coordinates as well as the slopes of the particles. For this reason,
Step 4 is usually referred to as “disruption.” The only circumstance in which there is no disruption occurs
when both beams have zero bunch length. If only the strong beam has zero bunch length (e.g., if it is
represented by a thin lens), the weak beam will still suffer disruption due to the sc dependence in Step 3
arising from the synchrotron oscillations of its particles.

4 Short-term single-particle tracking results.

Here we carry out turn-by-turn tracking for an individual particle at a time with given initial coordinates
for a certain number N of turns. For all cases in this section we completely neglect damping and quantum
excitation in order to eliminate numerical discrepancies arising from random number generators.

We assume that the lattice is decoupled and is described by a pair of 2 × 2 linear transport maps with
given tunes. Similarly, we also assume that the longitudinal dynamics is described by a linear 2×2 map with
a given synchrotron tune. We carry out a weak-strong calculation where the dynamical (or weak) beam is

1The function w(z) is not to be confused with the weights wk of the previous section, nor is the complex number z with the
longitudinal coordinate z.
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Table 3: Parameters used in the simulations.

weak beam (e+ ) strong beam (e−)
E [GeV] 3.1 9.0 †

β∗x [m] 0.375 0.500
β∗y [m] 0.015 0.020
σx [µm] 151.6 † 151.6
σy [µm] 6.063 † 6.063
ν0x 0.57 0.57 †

ν0y 0.64 0.64 †

σz [cm] 1.0 1.0
νs 0.0372 0.0523 †

σp/p 0.809× 10−3 0.615× 10−3 †

N 5.630× 1010 † 3.878× 1010 †

ξ0x 0.03 0.03 †

ξ0y 0.03 0.03 †

† These parameters do not enter the weak-strong simulation,
but we list them nevertheless for the sake of completeness.

the positron beam. The particle distribution of the electron beam is assumed to remain a three-dimensional
gaussian whose transverse size is modulated by the beta functions, but whose emittances remain fixed at
their nominal values.

The simulation data is obtained as follows: we first assign input values to all six normalized coordinates.
The particle then undergoes a linear lattice transport, then a synchrotron map, and finally the beam-beam
kick. Immediately after the beam-beam kick, its six normalized coordinates x/σx, x′/σx′ , y/σy, y′/σy′ , z/σz
and ∆p/σp are recorded. This process is then repeated for N turns, with one line of data per turn. The
tracking data is processed with the code PORTRAIT [12], from which we obtain all three phase space plots
and their corresponding Fourier spectra. Each spectrum is produced as follows: we first compute

X̃k =
N∑
n=1

Xn e
2πi(n−1)k/N , k = 0, 1, · · · , N − 1 (20)

where Xn represents here either x/σx or y/σy or z/σz at turn n. We then normalize the spectrum by the

largest of the absolute values |X̃k|’s, and plot these normalized absolute values vs. k/N . We only plot the
spectrum for the modes k = 0, 1, · · · , N/2 on account of the well-known reflection symmetry of |X̃k| about
k = N/2.

In addition to the spectrum, PORTRAIT computes all three dynamical tunes νx, νy and νz by numerically
integrating the three phases over the N turns. We then form the linear combinations nνx +mνy + lνz where
n, m and l are positive or negative integers2 up to a certain maximum absolute value, and we plot a vertical
dotted line whenever nνx + mνy + lνz (aliased to the interval [0, 0.5]) coincides with a local peak of the
spectrum that is higher than a given threshold value. In this way we can identify resonances, which are
labeled by the three integers n, m and l on the plots.

The simulation parameters are listed in Table 3. The values in this table are like those considered for
the PEP-II B factory [2]; for the nominal PEP-II bunch collision frequency of 238 MHz, these parameters
imply a nominal luminosity of L0 = 3× 1033 cm−2 s−1.

Comparison of the four codes. We now compare the results of the four codes considered here. In
all cases we track for N = 512 turns, use Ns = 5 kicks, and use slicing algorithm #2. We compute w(z)

2Except that, without any loss of generality, we choose n ≥ 0.
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by simply invoking the IMSL R© library function CERFE [13] except that the code TAIL uses the Pade
approximant method [14]. The initial values of the coordinates are x0 = 3σx, y0 = 1.5σy, z0 = 3σz and
x′0 = y′0 = ∆p0 = 0.

In Figs. 2 and 3 we show only the vertical phase space and spectrum obtained from each of the codes.
We choose the vertical spectrum because, in our experience, it is more sensitive than the horizontal (and
the longitudinal) in showing differences in the results. It can be seen that the codes agree with each other
almost perfectly. The tiny differences (typically in the 4th or higher digit of the values of the coordinates)
can be accounted for by the differences in the accuracy of the input values and of the different computers
used for the tracking (codes TRS and BBTRACK3D were run on the same computer and their results do
agree to computer accuracy).

We have carried out many more simulations with different initial conditions, different number of slices
and different slicing algorithms. Ref. [1] contains but a small sample of these. The excellent agreement seen
in Figs. 2 and 3 is typical of the larger set.

Algorithms for the complex error function. In Ref. [1] we also present a systematic comparison of
four algorithms for the computation of w(z): table interpolation to 3rd and 4th order, the Padé approximant
method [14], and the IMSL library function CERFE [13]. The result of this exercise is that there are only
small differences in accuracy (smaller than 1 part in 106), but large differences in computational speed. The
table interpolation to 3rd order is the fastest of the four methods.

Effects of deliberate errors. In order to get an idea of the effects of nontrivial algorithmic errors,
we show in Fig. 4 the results arising from incorrect coding. The first set in this Figure corresponds to an
older version of TRS in which the kick from an individual slice was incorrectly modulated by the local beta
function: Step 3 of the beam-beam kick (Eq. (16)) was coded as

x′ → x′ +
(
βx−(sc)/β

∗
x−
)

∆x′, y′ → y′ +
(
βy−(sc)/β

∗
y−
)

∆y′ (incorrect!) (21)

Other than this difference, all tracking conditions were identical to those used in Figs. 2 and 3. One can see
clear differences: the vertical amplitudes reach out to ∼ 3 in Fig. 4 rather than to ∼ 1.5 in Figs. 2 and 3,
and the vertical spectra are substantially different.

As discussed in Sec. 3, Step 4 (“disruption”) of the algorithm for the thick lens beam-beam interaction
makes the sequence of kicks experienced by the tracked particle noncommutative. The second set of results
in Fig. 4 shows the results of deliberately (and incorrectly) reversing the sequence of kicks experienced by
the positron for the case Ns = 5. As in the previous example, there was no other difference in the tracking
conditions from those used in Figs. 2 and 3. The phase spaces are not substantially different, but the vertical
spectra are clearly different at the low end.

5 Comparison with analytic results.

In this section we compute the tune shift as a function of amplitude obtained from single-particle tracking
with TRS and compare the results with first-order perturbation theory calculations. Again, we completely
neglect radiation damping and quantum excitation and we use the thin-lens approximation, i.e. we take
Ns = 1 slice in the beam-beam kick algorithm. Depending on the case studied, the particle may or may not
perform synchrotron oscillations.

Case with no synchrotron motion. In this case the positron that is being tracked collides at the IP
with a single-slice electron bunch. The rms beam sizes of the electron bunch at the IP σx− and σy− are
understood to be evaluated at the IP.

The analytic calculation we use is described in Ref. [15], except for one detail which we will clarify below.
The first step is to recall that the electromagnetic kick from one slice can be written as a two-dimensional
vector as

(∆x′,∆y′) = −reN−
2γ+

(E + v+ ×B) = −reN−
γ+

E (22)

9



      

where the subscripts + and − refer to positrons and electrons, respectively. The electric field per unit charge
produced by the electron beam, E(x, y, σx−, σy−), is the solution of Poisson’s equation, ∇ ·E = 4πρt, where
ρt(x, y, σx−, σy−) is the transverse gaussian density, Eq. (18) (since the bunch is represented by a single slice,
∆N− = N−). The fact that the magnetic and electric terms in the Lorentz force are equal is a consequence
of the extreme relativistic approximation used (we also assume that the positron velocity v+ is antiparallel
to the electron bunch velocity).

If we define the potential V as E = −∇V , then the “phase averaged beam-beam parameter” (our
nomenclature) of the kicked positron is given by [15]

ξi = −reN−
2πγ+

∂T00

∂Ii
, i = x, y (23)

where T00 is defined by

T00 =

2π∫
0

dθx
2π

2π∫
0

dθy
2π

V
(√

2β∗x+Ix cos θx,
√

2β∗y+Iy cos θy

)
(24a)

≡
〈
V
(√

2β∗x+Ix cos θx,
√

2β∗y+Iy cos θy

)〉
(24b)

Here the I’s and θ’s are the amplitudes and phases of the positron, respectively. The tune shifts of the
positron ∆νi are then obtained by solving the usual equations

cos (2π(ν0i + ∆νi)) = cos(2πν0i)− 2πξi sin(2πν0i), i = x, y (25)

where the ν0i’s are the “bare lattice” tunes.
In Ref. [15] the ξ’s are assumed to be small enough that the approximation ∆νi = ξi (which follows from

Eq. (25) for small enough ξ) is valid. Hence in this approximation ∆νi is given directly by Eq. (23). Our
approach, which involves the extra step (25), can be thought of as a different perturbation expansion that
reduces to the conventional one in the small-ξ limit, but that yields the exact result when the perturbation
force is linear.3

It should be noted that
√

2β∗x+Ix and
√

2β∗y+Iy in Eq. (24) are nothing but the injection amplitudes
x0 and y0 of the positron, respectively (we recall that in all our calculations the initial slopes vanish,
x′0 = y′0 = 0). Therefore, by using the chain rule ∂/∂Iy = (β∗y+/y0)∂/∂y0 and E = −∇V we obtain

ξy = −
reN−β∗y+

2πγ+ y0

∂

∂y0
〈V (x0 cos θx, y0 cos θy)〉 (26a)

=
〈
2 cos2 θy ξy` (x0 cos θx, y0 cos θy)

〉
(26b)

and similarly for ξx. We have defined the “local vertical beam-beam parameter” ξy`(x, y) as

∆y′(x, y) ≡ −4πξy`(x, y)
y

β∗y+

(27)

where ∆y′(x, y) is given by Eq. (22).
As an example, we have used the PEP-II–like parameters listed in Table 3. As before, we tracked the

particle with TRS for N = 512 turns, used one kick (Ns = 1), and used the IMSL R© library [13] to compute
w(z). Radiation damping and quantum excitation were wholly neglected. The tune was computed with
PORTRAIT. The tracked particle was injected with x0 = z0 = 0, and the vertical amplitude was varied in
the range 0 ≤ y0 ≤ 10σy. For the analytic calculation, we integrated numerically Eq. (26b). Results are
shown in Fig. 5. The agreement is almost perfect.

3One of us (MF) is indebted to Étienne Forest for a discussion on this point.
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In Ref. [1] we also carried out this exercise for a round beam. In this case the phase integrals can be
carried out and the result expressed in closed form. The agreement between tracking and the analytic result
is also excellent.

Case with synchrotron motion. In case when the positron is performing synchrotron oscillations, it
collides against the opposing thin-slice electron bunch at a longitudinal coordinate sc = z/2 (see Eq. (14))
where z is the positron’s longitudinal coordinate at the time of the collision. Thus the vertical kick it receives
at the collision point (x, y, sc) is given by

∆y′(x, y, sc) = −reN−
γ+

Ey (x, y, σx−(sc), σy−(sc)) (28)

and similarly for ∆x′. Here Ey is computed by using the actual beam sizes σx−(sc) and σy−(sc) of the
electron bunch at the collision point, given by Eq. (17). Therefore it seems clear that the generalization to
the present case of the phased-averaged vertical beam-beam parameter is

ξy =
〈
2 cos2 θy ξy` (x0 cos θx, y0 cos θy, (z0/2) cos θz)

〉
(29)

where the local vertical beam-beam parameter ξy` is defined by

∆y′(x, y, sc) ≡ −4πξy`(x, y, sc)
y

βy+(sc)
(30)

with a similar expression for the horizontal counterpart. Note that the phase average 〈· · ·〉 is now three
dimensional,

〈· · ·〉 =

2π∫
0

dθx
2π

2π∫
0

dθy
2π

2π∫
0

dθz
2π

(· · ·) (31)

and that the beta function in Eq. (30) has the appropriate sc-dependence.
Case when the positron is close to the axis. Fig. 5 shows the tracking results and analytic

calculation of the vertical tune plotted as a function of the longitudinal launching amplitude z0 of the
positron (z0 is normalized to the rms bunch length of the opposing bunch). The particle is tracked with
TRS for N = 512 turns, with Ns = 1, using the IMSL R© library calculation of w(z) [13]. The particle is
launched close to the beam axis (x0 = 0, y0 = σy/10), with x′0 = y′0 = ∆p0 = 0, and z0 is varied in the
range 0 ≤ z0/σz ≤ 20.

The three cases displayed in Fig. 5 correspond to different ratios of the beta functions of the two beams
(in all 3 cases, however, the beams have the same aspect ratio, σx/σy = 25). These are dubbed “symmetric,”
“nominal,” and “high asymmetry.” The nominal case is exactly the same as that displayed in Table 3. The
number of particles per bunch in all three cases are adjusted so that the nominal beam-beam parameters
remain fixed at 0.03. Table 4 lists the relevant parameters.

In the three cases the beta functions at the IP of the positron beam are held fixed, and so is the beta-
function ratio for each beam, namely β∗x/β

∗
y = 25. Similarly, the beam aspect ratio at the IP is fixed:

σx/σy = 25 for all cases. What changes from one case to the next is the ratio of the beta function of one
beam relative to the other: the ratio β∗−/β

∗
+ takes on the values 1, 1.333. . . and 2.666. . . for the symmetric,

nominal and high asymmetry cases, respectively. If the positron did not perform synchrotron oscillations, it
is a priori obvious that the tune shift would be the same in all three cases. However, the fact that the beta
functions of the electron beam are different makes the modulation of the positron beam-beam parameter vary
from case to case due to the differences in the hourglass effect [16]. In fact, for a flat beam, a simple analytic
calculation for the vertical beam-beam parameter of a positron oscillating longitudinally with maximum
amplitude z0 and with x0 ' y0 ' 0 shows [16] that ξy+(z0) scales like ξy+(z0) ∼ βy+(z0/2)/

√
βy−(z0/2).

This scaling shows that ξy+(z0) grows linearly when z0∼>β∗y−. Also, if β∗y+ is kept fixed, as we do in Table 4,
the tune shift is larger the larger is β∗y−. Actually, if this scaling formula (properly normalized) is inserted
into Eq. (25), the resultant vertical tune is in good qualitative agreement with the more accurate calculations
shown in Fig. 5.
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Table 4: Parameters used in the three cases with synchrotron motion.

symmetric nominal high asymmetry
e+ e− e+ e− e+ e−

E [GeV] 3.1 9.0 3.1 9.0 3.1 9.0
β∗x [m] 0.375 0.375 0.375 0.50 0.375 1.0
β∗y [m] 0.015 0.015 0.015 0.02 0.015 0.04
σx [µm] 131.3 131.3 151.6 151.6 214.4 214.4
σy [µm] 5.251 5.251 6.063 6.063 8.574 8.574
ν0x 0.57 0.57 0.57 0.57 0.57 0.57
ν0y 0.64 0.64 0.64 0.64 0.64 0.64
σz [cm] 1.0 1.0 1.0 1.0 1.0 1.0
νs 0.0372 0.0523 0.0372 0.0523 0.0372 0.0523
σp/p [10−3] 0.809 0.615 0.809 0.615 0.809 0.615
N [1010] 5.630 1.939 5.630 2.586 5.630 5.171
ξ0x 0.03 0.03 0.03 0.03 0.03 0.03
ξ0y 0.03 0.03 0.03 0.03 0.03 0.03

For the high asymmetry case, Fig. 5 shows that the tune turns over at z0/σz ∼> 12. This is an artifact
of the aliasing inherent in the turn-counting method used to calculate the tune. Aside from this effect, the
results are in excellent agreement with the analytic calculation.

Case when the positron is away from the axis. In Ref. [1] we have also computed the tune shift
when both the transverse and longitudinal amplitudes are nonzero. Space constraints do not allow us to
present the results here. The result is that, when z0 > 0, the tracking and the analytic results agree very
well only for small values of y0. In fact, the tracking results for the tune as a function of y0 do not follow a
smooth curve. In contrast, the analytic curves do behave smoothly. An analysis with PORTRAIT, however,
shows that the synchrotron sidebands νy ± νs are prominent in this region of the amplitude space. It is
virtually certain that these sidebands are responsible for the lack of agreement between the tracking and the
analytic calculations (the analytic calculation is insensitive to these kinds of resonances, hence the smooth
curves).

6 Long-term tracking: amplitude distributions.

One-dimensional distributions. The one-dimensional horizontal density is defined by

1

N0

dN

dÂ2
x

, with Â2
x ≡

x2 + (βxx
′ + αxx)

2

σ2
x

(32)

with corresponding expressions for the vertical counterparts. Here N represents the number of particle-turns
at normalized amplitude Â, N0 is the total number of particle-turns accumulated in the tracking run, x and
x′ are the position and slope of the particle, αx and βx are the usual lattice functions of the weak beam and
σx is its nominal rms beam size. All these quantities are referred to the observation point, which we chose
to be the interaction point.

In this kind of simulation, damping and quantum excitation effects play important roles since the shape
of the particle distribution is a consequence of a dynamical equilibrium between these effects and the beam-
beam interaction. In Ref. [1] we present the calculation of this density for the five slicing algorithms and
for different number of slices with TRS. The result of this exercise is consistent with the discussion in Sec.
2 regarding the convergence rate of the slicing algorithms, and no new information can be extracted within
the accuracy of the calculation.
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Two-dimensional distribution. We now compare the results from the codes TRS, LIFETRAC and
TAIL for the 2-dimensional distribution in (Âx, Ây) space. In this case, we follow the custom of dealing with
the density

1

N0

dN

dÂxdÂy
(33)

which is normalized to unity,
∞∫

0

dÂx

∞∫
0

dÂy
1

N0

dN

dÂxdÂy
= 1 (34)

For any physical particle distribution, this density vanishes whenever Âx = 0 or Ây = 0 due to a zero of
the volume element. For reference, the nominal gaussian distribution is

1

N0

dN

dÂxdÂy
= ÂxÂy e

−(Â2
x+Â2

y)/2 (nominal gaussian) (35)

For the simulation we choose a large beam-beam parameter of 0.08 in order to enhance the tails of the
distribution. We achieve this value by scaling N by a factor of 8/3 relative to Table 3. The parameters that
are different from Table 3, including the damping times, are displayed in Table 5.

Table 5: Parameters used in the simulations for the 2-D distributions.

weak beam (e+ ) strong beam (e−)
N 15.01× 1010 6.895× 1010

ξ0x 0.08 0.08
ξ0y 0.08 0.08
τx [turns] 5400 5014
τy [turns] 5400 5014
τz [turns] 2700 2507

In these 2-D simulations we use 5 kicks (Ns = 5) for all three codes. However, the other conditions are not
exactly the same: (1) TAIL uses the Padé approximant method [14] to calculate the complex error function
rather than the IMSL R© library [13]; (2) TRS uses a slightly different algorithm for radiation damping and
quantum excitation from the other codes; and (3) LIFETRAC uses slicing algorithm #5 as opposed to
algorithm #2 used by the other two codes.

Figure 6 shows the contour plots for the resultant simulation from the three codes. The contour levels are
as follows: the first level is at a height 1/

√
e below the peak, and successive contour levels are at a constant

ratio e below each other. The agreement among the codes is quite good given the differences between them.
The code TRS does “brute force” tracking. For the particular simulation shown here, we used 1,024

particles and tracked them for 500,000 turns. Thus we accumulated a total number of particle-turns N0 =
0.512×109. The program took 818 CPU minutes to run on the Cray-2S/8128 at NERSC. On the other hand,
LIFETRAC and TAIL use an “acceleration algorithm” [17] that optimizes the generation of the tails of the
distribution. For the simulation shown in Fig. 6, the results from LIFETRAC correspond to an effective
number N0 = 4×1011 of particle-turns and took ∼ 100 CPU minutes on a VAX-6610 computer. The results
from TAIL correspond to an effective number N0 = 6.3×1011 of particle-turns and took ∼ 200 CPU minutes
to run on an IBM RS6000/375 computer.

7 Conclusions.

We have described a methodical comparison of four beam-beam codes with each other and with analytic
calculations. We have carried out single-particle and multiparticle tracking calculations and have computed
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the tune shifts with amplitude and the particle density distribution. In general, the agreement is almost
perfect when the comparison is meaningful, and the tiny differences can be traced to round-off errors. We
have studied the thin and thick lens approximations for the beam-beam interaction in weak-strong mode,
different slicing algorithms, and different ways of computing the complex error function. This article is a
brief summary of Ref. [1]; more details and more cases studied can be found in there. The good agreement
exhibited by the cases shown here and in Ref. [1] are typical of a much larger set that space constraints do
not allow us to present.

A study of the convergence rate as the number of kicks Ns →∞ of the five slicing algorithms shows that
#4 is the most efficient. Based on the damping time and on the curves for the convergence rates, we have
provided a criterion for the minimum number of kicks that must be used in a given situation for a given
algorithm. For the case of the PEP-II nominal design, the adequate number of kicks is 3 for algorithm #4,
and 15 for #1.

We found excellent agreement between the tracking results for the tune as a function of amplitude
and the corresponding analytical calculations. These calculations were done for one slice, with or without
synchrotron motion, for round and for flat beams. We found a discrepancy only in the case when the
amplitudes of betatron and synchrotron oscillations are both large. In this case, however, the synchrotron
sidebands of the vertical tune are prominent. Since the analytic calculation does not take these sidebands
into account, the discrepancy is not meaningful.

By using the fourier spectrum of the single-particle motion as a probe, we uncovered errors in earlier
versions of the code TRS. It turns out, however, that these errors lead to only minor effects in the multiparticle
simulations carried out for PEP-II [2]. However, they might have been more important in other situations.
One of our main motivations in carrying out the detailed single-particle comparisons was to look for these
errors. It is gratifying that the spectrum of the motion provides such a useful magnifying glass through
which to look at the beam-beam interaction.

The two-dimensional particle distributions in amplitude obtained from the three codes TRS, TAIL and
LIFETRAC are in good agreement. In this case we do not expect the agreement to be perfect because the
codes use different algorithms for slicing, radiation damping and quantum excitation.

As discussed in detail in Ref. [1], there are significant differences in computational speed (but not in
accuracy) in the above-mentioned algorithms for the complex error function. In Ref. [1] we also discuss
the effects from different slicing algorithms and different number of slices in the computation of the one-
dimensional particle distributions; the conclusions from this particular exercise, however, are subsumed by
those reached from the other calculations described here.

In summary, we have exhibited results in good agreement obtained with four different beam-beam codes.
Although these codes are optimized for different purposes, it is clear that their basic “engines” are doing the
same thing. Since the results also are in excellent agreement with analytical calculations, we conclude that
the codes are correct to the extent that they involve the same approximations used in these calculations.
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Figure 2: Single particle tracking (BBTRACK3D and TRS, N = 512, Ns = 5, slicing alg. #2).
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Figure 3: Single particle tracking (LIFETRAC and TAIL, N = 512, Ns = 5, slicing alg. #2).
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Figure 4: Single particle tracking with two deliberate errors: incorrect modulation of the kicks (Eq. (21), or
inverted kick sequence (TRS, N = 512, Ns = 5, slicing alg. #2).
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Figure 5: Top: vertical tune vs.vertical amplitude with no synchrotron motion; bottom: vertical tune
vs.longitudinal amplitude for fixed (but small) vertical amplitude. Tracking results (crosses and diamonds)
for a single positron colliding against a thin-lens electron beam were obtained with TRS with Ns = 1. In
all cases the electron beam aspect ratio is σx/σy = 25; the differences between the three sets of data in the
bottom figure are due to the hourglass effect.
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Figure 6: The 2-D amplitude distribution. (a): TRS; (b): LIFETRAC; (c): TAIL.
All three cases use 5 kicks; other conditions are described in the text.
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