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12.1 Introduction

So far we haveconsideredhe motion of the particlesin the acceleratoiin given external
electric and magneticfields. As the particlestraversethe ring, however,they interact with their
surroundingsvia the electromagnetidield createdby their own chargeand current. This field
extends for a certain distance behind the parttblgiscreatedt, andis calledthe wake field. As an
example of this interaction, thesistivity of the vacuumchambercausesohmic lossesasthe wake
field drags along the@nagecurrentsin the wall of the chamberIn addition,the wakefield canact
backon the samebunchthat createdit and/oron the other bunchesthat come behind.Or, as a
bunchtraversesan RF cavity, it can excite one or more of its higher-ordermodes (HOMS);
although the electromagnetidields of thesemodesare mostly trappedinside the cavity, they
typically resonate for a long time, and can therefore influence all the bunches in thadibaynin
turn, traverse the cavity. Thus in general, if certain conditions are met, the wake fiatd loack on
the beamin such a way that an initial disturbancegets amplified and hencean instability is
generatedln somecases;he disturbancegrows indefinitely, causingbeam loss; in others, the
disturbance saturates, growing only until a new equilibrium situation is reached.

The key signature for these phenomenanigntensity dependence: whenthe currentis low
the wakefields are weak,and the beamcharacteristicare dominatedoy single-particledynamics.
As the beamcurrentis increasedthe wake fields becomestrongerand can influence the beam
dynamics,and hencethe machineperformancesignificantly. Someof thesephenomenalepend
smoothly on current, and some othbasvea well-definedonsetas the currentexceedsa threshold
value beyond which the wake field forces overcomethe damping mechanismsAll of these
phenomenaarise becausethe beam, being a collection of charges,acts back on itself via the
environment in which it travels; for this reason, these are aailbsitive phenomena.

In this chapter we present an outline of the typical instabilities observed or expdaet
sourcesynchrotronsand the techniquesused to avoid or mitigate them. Since the physics of
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instabilities is generic to all rings that stoedativistic electronsor positrons,it is importantto note
that the situation in light sources is very similar to wh&bisd in othercircular machinessuchas
damping rings and*ee- colliders.

At the coreof any discussionon instabilitiesis the impedance of the machine, which is
closely relatedto the wake field. Once the impedances known, it is possibleto calculatethe
thresholds and growth rates of the instabilities. The defindfampedanceand a discussiorof its
properties and measurement techniques is presented later.

We also describe briefly ion trapping, intrabeam scatteringand Touschek scattering.
Although these phenomenado not dependcritically on the interaction of the beam with its
surroundingsthey are neverthelesitensity dependentandin this sensethey can be considered
collective effects.

12.1.1 Sability!

The actual closed orbit in a real machinedeviatesfrom the ideal closed orbit due to
inevitable errorsin survey and alignment. Typically, the maximum value of this deviation could
range from a few mm to @m, arising from a realistically achievablesurveyand alignmenterror of
0.1 mm. This is a time-independent, stationary configuration and can be improvebbggdorbit
measurement and correction scheamployedin all modernstoragerings. An irreducibleresidue
of 0.1-0.5mm in the maximum closed-orbitdeviationis achievableafter a convergentseriesof
iterations.

Machine operation would be simple if tbebit, the lattice functionsandthe RF parameters
were independent of time and particle oscillatiasese linear to large amplitudes.The challengeof
control of the photon source stemsfrom the reality of time-dependenperturbationsand the
essential nonlinearity of the beam dynanatkrge amplitudes.Thereis alwayslong-termground
motion and various vibrations and noise sources at shorter time scales, and partscieeetedo
large oscillationamplitudesat injection aswell as during the rest of the lifetime of the beamby
various scattering processes. In addition, there are other time-dependent procesassofiecant
beaminstabilities,oscillationsof trappedions interactingwith the beam,etc. The frequenciesand
time scales of these various processes, their sources, manifestations in thaedbeagproperties,
monitoring systems and possible cures can be grasped by a look at Fig. 12.1

12.1.2 Overview of Instabilities and Their Effects

Instabilities are usually classified into single-bunch and multi-bunch. Single-bunch
instabilities are strongly influencda) short-rangevakefields arisingfrom small structuresn the
vacuum chamber such as bellows, discontinuities, vacuum ports, beam position neiniteisfi-
bunch instabilities are strongly influenced by long-range wakefields, or by localized wakélds
lastfor along time. As mentionedabove,the most important mechanisnthat gives rise to such
wakefieldsis the excitationof HOMs in resonanstructuresgspeciallythe RF cavities. The wake



fields produced by the finite resistivity of the vacuum chamber are also important in this respect.

f(Hz)

A

10 +
[year]- -
106 +

[day} —-
[hour} - -

103 —+

[min]= = -

[sec]1 <~

103 +

100

10°

"}

seasonal ground
temperature

atmospheric temp.
and power line

electrical power
cycles

cooling water
temperature

ground motion

mechanical vibrations

— 360 Hz

} ion trapping

f;, synchrotron
motion, 5-60 kHz

freys Revolution freq., 1-2
MHz

fB, betatron motion

frRE, 500 MHz

higher order
RF

Manifestations Monitoring Cures
circumferential BPMs feedback
change

electron and
photon Eigﬁ;ﬂd feedback
beam motion BPM

brightness, beam profile clearing, shaking,
lifetime light monitor,  better vacuum
Bremss.
detector
dynamic
stability of lattice
particle BPMs compensation
orbits,
dynamic
aperture
current- .
dependent fast photodiode,
effects, streak camera, RF feedback
instabilities, striplines
bunch
lengthening, ...

Fig. 12.1. Various frequencies and time scales relevant to storage-ring stability.

Instabilities can have two kinds of unfavorable effects: degradation betmalifetime, and
degradation of the beam quality. These two effects armuottally exclusive.Typical designgoals
of light sourcesare long beamlifetime, small beamemittance,short bunch length, small energy
spreadand stable orbits. Instabilities can cause bunch lengthening,increasedenergy spread,
shortenedbeamlifetime or bunch-to-bunchjitter of the beamorbit or of the buncharrival time.
Examplesof mechanismghat can affect the beam lifetime are the transversemode-coupling
instability and multi-bunch coupling. The first phenomenons single-bunch,the secondmulti-
bunch.In the coupled-bunchnstability, all the bunchesacttogetherin sucha way asto causea
resonancavhosetypical time scaleis quite short. Therefore,unlessa feedbacksystemis active, a
coupled-bunch instability caeadto suddenbeamlosses.An exampleof instability that degrades
the beam quality is the longitudinal microwave instability, which increases the energy spréae and



bunch length. Longitudinal multibunch oscillatiocen be stable(finite amplitudeoscillations),but
they causea jitter in the arrival time of the bunchesat a given point in the machine thus havinga
detrimentaleffect on applicationsthat are sensitiveto time resolution. Similarly, stabletransverse
multibunch oscillations lead to an effectiviereasan the beamemittanceand hencea degradation
of the brightness of the emitted synchrotron light.

12.1.3 Damping Mechanisms

The mostimportantway to mitigate single-bunchinstabilitiesis by careful designof the
vacuumchamberModerndesignsplacea premiumon its smoothnesssincethis leadsto smaller
impedanceand hencea decrease@hancefor instabilitiesat a given bunch current.In practice,of
course, it is not possible to haagerfectly smoothchamberand hencecertaincompromisesnust
be made.

Two mechanismshat help damp instabilities exist naturally in any electronstoragering.
The first andmostobviousoneis the dampingprovidedby the radiationof the synchrotronlight.
Instabilities whose growth time is longer thitse dampingtime (which is typically on the order of
severalthousandurns),do not manifestthemselvesas suchand do not lead to a problem. The
secondmechanismyvhich is more subtle,is Landaudamping.As explainedin more detail below,
this mechanisnrequiresa spreadin the oscillation frequencyof the particles within a bunch.
Landau damping effectively transforms t@herentmotion of the beaminto incoherentmotion of
the patrticles via phase mixing induced by the oscillation frequency sjmeihe.caseof transverse
oscillations,a frequencyspreadis provided naturally by the unavoidablemachine nonlinearities
which, in turn, lead to an amplitude dependenceof the betatron frequencies.A longitudinal
frequencyspreadalso existsnaturally dueto the sinusoidalRF voltage,leadingto nonlinearity of
the synchrotron forces at large amplitude. If the natural nonlinearge®t strongenough(in the
caseof small-emittancebeams,for example),there are artificial meansof enhancingthem, as
discussed below.

In any case, these damping mechanisms are typically not enoelyhit@ateall instabilities
in modern light sources, at least not when threaehinesare operatedn high-current,multi-bunch
mode. Certain instabilities can be avoided by proper choice of parameters;for example, the
Robinsoninstability is avoidedby a slight detuningof the fundamentaRF frequencyaway from
hwy, whereh is the harmonic number (see Chapter 4)ani the angular revolution frequency.

Generally speaking, the design of meghchrotronlight sourceds suchthat single-bunch
instabilitiesare avoided,or at leastare not serious.Coupled-bunchnstabilities are alleviatedby
damping the HOMs of the RF cavities, which ¢emachievedby cleverdesignof the cavity shape,
and by addinglampingelementsHowever,it is typically impossibleto avoid all suchinstabilities
by passivemethods.An active feedbacksystem(see Chapter13) is thus required that detects
incipient unstable motion and applies appropriate compensating time-dependent fooceseiact
it. Althoughit is in principle possibleto designa feedbacksystemthat would eliminate single-



bunchinstabilities,in practicethe power and bandwidthrequirementon such a systemwould
typically make it prohibitively expensive.

12.2 Wake Fields and Impedances

12.2.1 Definitions?

Whenever a relativistic charged particle travels near a material that is not pesrigatithor
not perfectly conducting,an electromagnetidield is createdthat extendsfor a certain distance
behind it and lasts for a certain characteristic theforeit dissipatesThis is the wake field which,
in turn, can acbackon the particlestravelingbehindthe one that createdt. If the wakefield lasts
for a sufficiently long time, it will affectthe particlesin trailing bunchesin successivaurns. The
impedance is essentially the Fourier transform of the Lorentz force cauiezMmkefield, andis
thus a measure of the strength and shape of the frequency spectrum of this time-varying force

In the simplest version, the “beam” consists of a sipglticle of chargeq travelingat the
speed of light down acylindrically-symmetricpipe. The beamtrajectoryis a straightline parallel
to the axis but is offset transverselyfrom it by x. We considera “test particle” of chargee also
traveling at the speedof light parallelto the beamat a distancez behindit, with sometransverse
position of its own. The pipe need not be perfectly conductiremooth;however,we assumehat
the lack of smoothness is not extreme, and the averageapippsis b. From Maxwell’s equations
one can calculatein principle the transverseand longitudinal electromagnetidorce on the test
particle. If we integratetheseforces over a distance L > b, we obtain, by definition, the wake

functions W(2) and W (2)
L L
Jdshi=ea@ 4 APy = —eqiy(2)+- (12.1)

where--- refers to term®f higherorderin x andin the transversgosition of the testparticle,and
where the integration variable s is the distancealong the trajectory of the test particle. The
correspondingmpedancedor the distancelL are definedby the Fourier transformof the wake
functions, and are given by

Z(@) =2 [ e W@, Zo@= [ e TWE 22

where the sign convention is thak 0 means that the test particléghind the beam.

Obviously, the distinction betweerthe beamandthe test particle is a purely mathematical
onethatallows oneto definewakefunctionsandimpedancesin a real machineall particlesplay
both roles, since they producewake fields and are, in turn, affected by the wake fields of all
particles.

Impedances summarize all the electromagnetic effects from the environment traverged by
beam.Thus the vacuumchamberresistivity, RF cavities, bellows, discontinuities,vacuum ports,



flanges, curvature of the chamber,synchrotronradiation reaction, etc., all contribute to the
impedance. For a circular machine, the disténice(12.1) is usually taketo be the circumference,
so that Egs. (12.2) representhe whole-ringimpedancesin reality, the forces on the test particle
fluctuate as the beam and the test particle traversethe different structuresalong the vacuum
chamber. A basic underlying assumptiorthe usefulnesof the wakefunctionsis thatthe forces
on the test particle do not deviatemuch from their averagevalue. In some cases,however, this
averagingdoesnot yield accurateresultsfor certaininstabilitiessuchasthosecausedoy coherent
synchro-betatron resonancéeis these cases, the localized nature of the impedance is importhnt
special methods, such as simulation codes witlh@dependenilaxwell’s equationssolver, must
be used;we will not be concernedwith such a possibility here. Therefore,even though wake
functionsaredefinedin principle for arbitrary boundaryconditions,their usefulnessas analytical
tools diminishes as the characteristics of the vaccliamberbecomemore and more complicated.
Fortunately most modern accelerators do not fall under this category.

Even for a point charge in a perfectly smooth cylindrical gipereis an infinite numberof
wake functions (antmpedancesjepresentedby --- in Eq. (12.1). Thesetermsrepresent power-
series expansion of theansverser longitudinalforce in the transversalisplacemenbf the beam
and of the test particle. The leading terms are those shown above, namebntpolelongitudinal
wake function, usually labeled m= 0, and the dipole transversewake function, usually labeled
m=1. The correspondingmpedances;(w) and Z(w) in Egs. (12.2) are also labeled m=0
and m=1, respectively. The wordsnonopole” and“dipole” referto the fact thatthe forcesare
produced by the monopole and dipole moments ottiaegedistribution of the beam,respectively
(note that the forces on the test patrticle, Eqgs. (12.1), are independenbf its transverseposition
through dipole order). The higher-ordempedancebecomemportantwhenthe transversesize of
the beam is comparable to the vacuum pipe diameter. We shia# cohcernecherewith any m's
higherthan 1 for the transversecaseor higher than O for the longitudinal (the transversem =0
wake function vanishes by symmetry), and we will omit the laibel

On the other hand, thengitudinal charge distribution does matter in marases.Thus,for
most purposesyve canview the beamas consistingof needle-likebunchesandthe calculationof
the electromagnetic force dhe testparticlesrequiresa superpositiorover the longitudinal charge
distribution, typically assumed Gaussian. The impedance resultingHiisisuperpositioris called
the effective impedance.

12.2.2 Properties and Basic Uses of |mpedances?

As implied by Egs. (12.1), the wakefunctionsarereal functions. Therefore by taking the
complex conjugateof Egs. (12.2) we concludethat Z”(a))D = Z(-~w) and Z (a))D =-Z5(-w).
Thereforethe real part of Z(w) is a symmetric function of « while the imaginary part is
antisymmetricthe transversempedanceZ,(w) hasthe oppositeparity properties,on accountof
the extra factor af in its definition. Theseparity propertiesare genericof all impedancesnot just



those defined above.
Another generipropertyof the wake functionsis thatthey are causal functions: sincethe
forces ahead of the beam vanish, any wake function satisfies

W(z) =0 forz>D0. (12.3)

A fundamentaltheorem of the Fourier transform of causal functions then implies that the
correspondingmpedancas an analyticfunction in the upper half of the complex« plane.One
consequence of this is that the impedances satdifgparsion relation that relatesthe real andthe
imaginary parts: if the real part is known for all frequenciesthe imaginary part is uniquely
determined from théispersionrelationandvice versa.As a by-productof the dispersionrelation,
one concludes that any impedance must satisfy

Z(w) - 0 asw — =oo. (12.4)

Even though there is no generally-valid relation betweenlongitudinal and transverse
impedances of differemt's, qualitative argumentshow that them = 0 longitudinal andhe m=1
transverse impedances are related by

Z,(w)= é_ZﬂI(“’) (12.5)

This relation is strictly valid for the resistive wall impedancea emooth,infinitely long, cylindrical

pipe of radiush. It is approximatelyvalid for otherimpedancesrisingfrom discontinuitiesin the
chamberwall such as bellows, small cavity-like structuresor other objects, provided their

characteristic size is small comparedbt&or larger objects, such as R&vities,Eq. (12.5)is valid

in an averagsensealthoughit becomesmore accurateat frequenciesabovethe cut-off frequency
w,, defined below.

In calculatingbeaminstabilities,the longitudinalimpedanceusually appearslivided by w.
Therefore, instead o (w), it is customaryto dealwith the quantity Z;(w)/n, wheren is defined
by n=wj/wy. Thus Z(w)/n hasthe oppositeparity propertiesas Z;(w), and the approximate
relation (12.5) reads

Zn(w) = @M (12.6)
b n
whereR is the average radius of the accelerator.

Equations (12.2) imply thaZy(w) (and henceZ;(w)/n) is measuredn Q while Zy(w) is
measured irfQ2/m. Modern storagerings, whethercollidersor light sourcesaretypically designed
for operationin high-current, multibunch mode. Stable operationrequiresthat the impedance
should be kept small, which impliéise needfor a smoothvacuumchamber Typically, the broad-
band average (definedbelow) of the impedancefor thesemodernrings is |Z; /n|bb =0.1-2 Q.
Older rings, which were not designedwith theserequirementsn mind, typically havelongitudinal



impedance value|§”/n|bIO in the range one to tens@f Figure 12.2 showa photographof a joint
in the injection region of the ALS vacuum chamber that exemplifies the attention paid to keping
impedance low.

Fig. 12.2. A transition joint in the vacuum chamber in the injection region dAllise The joint must be
flexible in order to accommodate a transverse matioa few cm during injection. The requiredflexibility
andlow impedanceas achievedby a “wire cage”design(the entire assemblyshownis enclosedn a large
bellows in order to maintain the vacuum). If the jdiad beenleft open,the discontinuitywould haveled
to a large impedance. Photo courtesy of J. Corlett.

The integralthat definesthe longitudinalwake functionin Eq. (12.1) is also equalto the
change of energy of the test particle in the distardee to the wake fields, so that

AE = —eqWj(2) (12.7)

(the sign conventionis that AE >0 meansthat the test particle gains energy).For a bunch of
particles, the total energy chanigethe distancel is given by a superpositiorover its longitudinal
chargedistribution p(z). Assumingthat the bunchlengthandthe rangeof the wake function are
both << L one obtains

21f the bunch length or the range of the wake function are not small, the integral in this equation must be replaced
by a summation over the harmonics of the bunch frequency.
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where p(w) is the Fourier transform q#(z) . Only the real part of the impedance contributethéo
integral becaushb(w)| is an even function ab (this follows fromthe fact that p(z) is real). Since
the beam as a whole can only lose energy, and this must Bertarearbitrary chargedistribution,
it follows that

ReZ|(w)z0 foral w, (12.9)

The energyloss of a bunchis often expressedn termsof the loss parameter (or loss factor) k,
which is defined to be

k=-AE/q? (12.10)

where AE andq are herethe total energychangeandthe total chargeof the bunch, respectively.
The loss parametelis always positive, and its typical numericalvalue for RF cavitiesis ~a few
V/pC. In practice,the bunch-lengthdependencef the loss parametecan give useful information
about the impedance of cavities or cavity-like objects.

Equation(12.1) allows oneto define an impedance-inducedoltagewhich is the potential energy
change of the test particle in the distabahie to the wake field. F@abeamdescribedoy a charge
distribution p(2), this potential energy change is given by

Vi(z)=- IEZp(Z)V\ﬁ(Z' -7 (12.11)

where wemakethe sameassumptiongsin the derivationof Eq. (12.1).In the frequencydomain
this equation is usually written

V() = =T (@) Zy(w) (12.12)
where I () is the Fourier transform of the current, defined ) = co(2).

12.2.3 Resonator Impedance Model



In practiceit is impossibleto accuratelyknow the impedancedor the ring as a whole.
However,impedance®f individual componentsan often be calculatedor measuredat leastin a
certain frequencyange.More typically, oneresortsto simple modelswith a few parametergor a
given ring component; the parameters are then determined by fitting the model to the measuremen
A simple and widely-used model for tlengitudinalimpedanceof a resonanstructuresuchasan
RF cavity is the superposition

Zy(w) = 3 Zyr (w)

(12.13)
where Z; . (w) is asingle-resonator impedance, defined by
A () = ;Sur w0l
1+i L——
UBo "w i (12.14)

HereQ; is thequality factor, « is the (angular)resonant frequency, andRs; is the strengthof the
resonator,or shunt impedance (measuredn Q). Eqg. (12.5) allows one to define a transverse
resonator impedance which is of the same form as Eq. (1&&dptfor an additionaloverall wt
factor.

The real part of the resonatorimpedance 7, (w) has peaks at w=ztcw; with
FWHM=w, /Q, . The imaginary part changes sigsithe frequencycrossests resonantvalue.By
definition, a broad-band resonator hasa relatively low Q, typically Q=1, and thereforewide
peaks.A narrow-band resonator haslarge Q andhencenarrow peaks.For example,the typical
resonantmodes of ordinary RF cavities have Q's of order 10% -10*, while those of
superconducting cavities ha@s of order 10° -10°. By taking the Fouriertransformof (12.14)
one finds that the decay time of tbecitationproducedby a resonatoiis 7, = 2Q, /w, . Therefore,
narrow resonances last for a long time and thus are a leading cause of coupled-bunch instabilities.

The real part of any impedance is calledrésestive component while the imaginarypartis
thereactive component. As shown abovegnly the resistivecomponentandissipateenergy.If the
reactive parts positive, it is called capacitive; if negative,inductive.? This terminologyarisesfrom
the fact thata pureinductorL hasanimpedanceZ = —iwlL , which is negativeimaginary, while a
pure capacitorC hasanimpedanceZ =i/wC, i.e., positiveimaginary.In fact, a simple model for
the single-resonatoimpedancas an RLC circuit in which all three elementsare in parallel, and

b Many authors define the impedance witeplaced by j-in Egs. (12.2). This can lead to confusion in the

definitions of capacitive and inductive. Whatever convention is used, the defining condition for a capacitive
impedance is that the response is ahead of the excitation, while for an inductive impedance the response lags in phe
behind the excitation.

10



where the resistance Rs. In this model the impedance is giviep Z ™% = R5* +i/awl —iwC which
is preciselyof the sameform as Eq. (12.14). The resonantfrequencyand the quality factor are
given by w, =1//LC andQ = Rg,/C/L, respectively.

For a broad-bandresonatorwith Q =1, the reactivepart of 7, (w)/n is inductive and
almost independentof frequencyin the range -w, < w < w,, while the resistive part has an
approximately linear frequency dependencthia range.Thesepropertiesare alsotrue of Z5(w)
on account of Eq. (12.6).

The loss factor for a high-Q resonatorimpedance( Q > o,w;,) traversedby a Gaussian
bunch with rms bunch lengtty; (in time units) follows from Eq. (12.8),

k= Bor®r ~(ow)? (12.15)
2Q

Typically, the fundamentaimode of a cavity hasthe lowest frequency,and is labeledby
r =0; this is typically the TN1pomode usedo acceleratehe particlesor to replenishtheir energy
that has been lost by the radiation prodesgeChapter4). HOMs, also called parasiticmodes,are
usually undesirable but unavoidable. Ideally, @r&should be large for =0 andsmallfor r > 1.
In practice, one tries to reduce @& of the HOMs as muchs possibleby cleverly reshapinghe
cavity or adding dampers.This is called “de-Qing,” or damping,the modes. Typically, it is
impossible to de&) all the HOMs to the pointhat coupled-bunchnstabilitiesare absenthencethe
needfor a feedbacksystem.A prototypeRF cavity for the PEP-II collider is shownin Fig. 12.3,
which exhibits the three wave guides used to damp many HOMs.

Fig. 12.3. Prototype of the PEP-II collider cavity. Ttheeelarge rectangulamwave guidesemanatingfrom
the bodyof the cavity areterminatedwith ferrite, andareusedto dampthe HOMs. Photo courtesyof R.
Rimmer.
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12.2.4 Impedance Beyond Cutoff4

If an RF cavity (or any cavity-like structure) were closed it would have an infinitgberof
modes.In practice thereare at leasttwo openingsneededor the beamtraversal. Therefore those
modeswhosewavelengthis smallerthanthe pipe radiusare not trappedin the cavity and are not
resonant. Thus there is a natuabff frequency, w., above which there are moore resonantavity
modes. It is usually defined by

w, = /b (12.16)

In modernstoragerings andlight sourcesthereis an increasingdemandfor shorterand
shorter bunch lengths. The shorter the bunch, the higheedhbof its frequencyspectrumlf the
bunchis shortcomparedto the vacuumpipe radius, its frequencyspectrumreachesheyondthe
cutoff frequency.Thereforethe behaviorof the impedanceat thesehigh frequenciescan become
important and needs to be examined.

The source of impedance beyond cutothis interactionof the beamwith the synchrotron
radiation that propagatesiown the vacuumchamberwhich, in turn, interactswith the different
structuresn the chamberIn addition,the curvatureof the trajectory can make particlesresonate
with waves having the same angular phase velocity as the particles.

The high-frequencyimpedanceof a curvedtoroidal vacuumchambercan be understood
simply in termsof the far-field radiationin free spaceof a particle beamon a curvedtrajectory.
Synchrotronradiation along a curvedtrajectory providesa dissipative mechanismanalogousto
resistive wall effects. The radiation reaction force follows feolongitudinal self-field that extracts
kinetic energyNeglectingthe shieldingprovidedby the vacuumchamberthe resultantfree space

impedance is given by

)
Zy(w)/n= G (ﬁ )ZO (12.17)
where I'(2/3) =135 is the gammafunction and Z, =4m/c=377 Q is the so-calledvacuum
impedance. This formula is valid for frequencies below the critical frequesegChapterl), given
by wei/wo =3y>/2 where y is the usual relativistic factor of the particle (for w> w; the
impedancdalls off exponentially).The nj/s-dependencef Z(w) is a consequencef the well-
known w%-dependence)f the synchrotronradiation power at large frequencyof a particle in
circular motion. The real part of the free space impedance has the approximate numerical value

Rez(w)=300n"° Q. (12.18)

The beampipe, however,providesshielding for low frequencies:radiation is essentially
suppressed for harmonibglow a cutoff givenby n; = (R/b)%'2. This expressiorfor ne IS exact

¢ For a perfect cylindrical pipe the cutoff frequency is 2c@SSince, in practice, the geometry is much more
complicated, the usual convention is to choose the numerical factor to be unity for simplicity.
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for a planar circular trajectory between two infinite conductitagnesparallelto the orbit plane.As
a result of this shielding, the maximum free space impedance is then given by

4@) 300n.7%°% Q= 30052D 0. (12.19)
N e 0RO

This result happens to be approximately the same for adiagsof shielding geometries.
Since,typically, b/R= O(10_4), this meansthat the shieldedfree spacevalue of |Z|| /n| is rather
small. Nevertheless, prudent ring designers typicaiyumeEqg. (12.19)to providea lower bound
for the estimate of the impedance beyond cutoff.

For vacuumchamberswith cavity-like structuresseveralmodelshaveled to the generic
behavior Z(c) U w™P for the longitudinalimpedanceat high frequency A crucial distinctionhas
been established between a singt#atedstructureand an infinitely long sequenc®f cavities:for
the first case, the powprhas been found to be=1/2while for the secondp = 3/2.

12.2.5 Impedance Calculations and Measurement Techniques®

The modeling and calculation of storage ring impedances has wagttywedover the past
20 years,mostly due to increasedcomputerpower and improved algorithmsfor the solution of
Maxwell’'s equations. For example, electromagnetic modeling codes such as feeFigalculate,
in principle, the wake function and impedance of any three-dimensional geomegirgctice,if the
geometry of the object sufficiently complicatedthe calculationsbecomelimited by the power of
the computer used to run the codes.

Severalbenchimpedanceneasuremertechniquesare usedfor testingactual or prototype
beamline components. For nonresonant components, @&svpessedn axis andthe transmission
through it is measured as a function of frequency. For resonant structures, the strengpld@sa
found by exciting it and measuring the resultfiedd patternalongthe beamaxis by introducinga
small movableperturbingneedle.The frequenciesand quality factors of the resonantmodesare
found by measuringhe transmissiorthroughthe structure Electromagneticodescalculatequite
accuratelythe R/Q ratios; by combiningthesecalculatedvalueswith the measuredQ’s one can
extract accurate values for the shunt impedances.

The impedanceof individual resonantmodeswith Q=210 can be measuredby the
frequency-perturbatiomethod.This is doneby usingbeadsor needleswhich shift the resonant
frequency. From this one can measure the energy densigsonancendextractthe R/Q ratios.
In practice, since the dimensions of the perturbing object must be much shaalligre wavelength
of interest, this technique cannot be used reliably at high frequency.

The pulsed-beammethodis conceptuallythe most attractivesince it closely mimics the
dynamics in the storage ring, and the definitiothefwakefield givenby Eg. (12.1). This method
consists of passing a pulse of electrons through the test object and measuring the erargyeloss
deflection of the trajectory to get the real pariZpfor Z;. To obtain the full wake function, oran
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usea smaller“witness” beamto sensethe delayedeffects.One canalso probe with antennago
study the excitationin the test object. The Wake Field Test Facility at ANL is devotedto this
method?!

Finally, of course, measuremenbf instability thresholds,bunch lengthening, etc., in
operatingstoragerings may be the ultimate phenomenologicalool to check calculations,predict
behavior and evaluatecures. From these measurement®sne can, in principle, extract the ring
impedancef the modelsusedin the calculationsare sufficiently completeand the measurements
sufficiently accurate.

12.2.6 Broad-Band Impedance Model

In spite ofthe progressn the calculationand measurementf the impedanceof individual
components, the determination of the impedance of the storage avghade is a challengingand
typically imperfect task. Even more challenging is the calculation of the net effect lnestimgiven
the individual componentimpedancesExperiencehas led to the developmentof the so-called
broad-band impedance model to accountfor the entire storagering impedance.This model
providesa simple conceptuabnd calculationaltool andit adequatelyrepresentsa wide variety of
storagerings. It hasbeenparticularly successfuln describingthe beambehaviorin storagerings
with longerbunchesMachinedesignreportsusually containan “impedancebudget” listing the
contributionsof the different ring componentsto the impedance.ln its simplest version, the
longitudinal broad-band impedance model of the ring has three components:

® A broad-bandesonatomwith w, andQ typically chosento be w, = w, and Q=1. The
shuntimpedanceR,, is determinecempirically from a fit to the data. This broad-bandresonator
accounts for the impedance contribution of all vacuum chamber components battbves joints,
low-Q parasitic cavity modes, vacuum chamber discontinuities, etc.

® A low-frequencycontributionfrom the skin effect of the vacuumchamberknown asthe
resistive wall impedance.

® Various narrowbandresonatorimpedancesncluding the fundamentaimode of the RF
cavity and other parasitic cavity modes.

The contributionfrom the resistivewall impedancecan be easily estimatedfor a typical
vacuum chamber. For all frequencies of practical interest, the longitudinal impedanoé [ggrgth
for an infinite cylindrical pipe of radiusis given by

. o]
Z)/L =2 (1-ie(e) 82 (12.20)

where g(w) is the sign function, d(w) =c \y"2n0|w| is the skin depthof the vacuumchamber
whose conductivity i

d Many authors exclude these narrowband components from the definition of the broadband impedance model.
€ This formula is not valid for frequencies so low that the skin depth is comparable to or larger than the thickness of
the vacuum pipe. It is also not valid at extremely high frequencies.
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Determinationof Ry, involves a wide variety of components.This shunt impedanceis
conventionally quoted g&, /|, , which is defined to be

4

n

= |lim
bb w-0

| Z)(w)| _ Ropwo
n Quw,

(12.21)

whosetypical valuefor modernstorageringsis in the range |Z” /n|bb =0.1-1Q. For illustrative
purposes we sketch the broad-band impedance for a hypothetical storage ring in Fig. 12.4.

1 1
a) resistive impedance

Wall impedance

S

High Q Ca rity modes

Broadband

— total
broadband

1 1
b) reactive impedance

cutoff frequency

Ly

]

m total
broadband

-4 -2 0 2 4
Frequency (GHz)

Fig. 12.4. Sketch of the broad-band impedance for a hypothetical ring. The vqahﬂ¢rq)gb relativeto the
shunt impedance of the narrowband resonators has been highly exaggerated.

12.3 Landau Damping

As mentioned earlier, the synchrotron radiation provides natural dampinggifothvéh time
of an instability is larger than the dampingtime of the ring, obviously it fails to materialize.A
seconddampingmechanismgalled Landaudamping,is more subtlebut just asimportant,andwe
sketchherethe basicphysicsunderlyingit. This mechanisnrequiresa spread in the oscillation
frequency, or tune, of the particf8.2

Consider a single patrticle executing transverse or longitudinal mattlow amplitude.The
particle createsa wake field that acts back on itself, driving it on resonanceand leadingto an
instability. This simple picture would lead one to expect essentiallyall particle motion in an

accelerator to be unstable. Landau damping is one of the reasons why, in practice, this expectation
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pessimistic.
Concretely,considera single harmonicoscillator subjectto a time-dependensinusoidal
force. The equation of motion is

X + w?x = AcosQt (12.22)

and we assumethat the initial conditionsare x(0) = x(0) =0. If the force drives the particle
resonantly, i.e., iQ = w, then the amplitude of the motion grows indefinitely according to

x(t) O AtsinQt. (12.23)

Correspondinglyits energy,which is proportionalto X [, grows like ~t2 for large t. implying
instability.

An ensemble of particles (such ag bunch),however,canbehavein a qualitatively different
fashioneven if the particles do not interact among themselves, provided their natural oscillation
frequenciesare spreadover a certainrange. Thus we assumethat the oscillatorshave a narrow
frequency spectrum p(w) of width Aw, and that they are all driven by the same force,
F = AcosQt, where Q lies within the rangeof p(w). For times t >1/Aw one finds that the
centroid of the ensemble is given by

(x) 0 AosQt Ij'dw p(_wg)) + TIP(Q)sith[ (12.24)

W E

where the symbol “P” instructs one to take the principal valubedhtegral at the singularity and
the spectrumis normalizedsuchthat [dw p(w) =1. Onealsofinds that the energyof the bunch
grows in time like

K2 Aztp(Q)- (12.25)

The ensemblecaseand the single-particlecasebehavequalitatively differently in that the
power oft with which the amplitude and the energy grow is one less ifotheer thanin the latter.
This is the essencef Landaudamping:the energypumpedinto a bunchof particlesgoesinto
increasingits sizeratherthanthe amplitudeof the motion of the centroid.In most practicalcases,
this increase in bunch size does not present a problem, and therefore the instability is avoided.

If the oscillatorsarefinite in numberandtheir frequenciedake on discretevaluesover the
rangeAw, Landau damping works qualitatively tine sameway asfor the continuumcase except
for one difference: the mechanism ceases after a+itféw, wheredw is the minimumfrequency
spacing betweenthe oscillators in the ensemble.The explanationis that, the system being
conservativethe driving force and the oscillatorsexchangeenergyback and forth in a beating
patternwhoseperiodis ~1/dw (we assumehat noneof the oscillatorsis exactlyon resonance).
Therefore, after this time, the ensembleoscillatorscomesbackto its initial stateandthe process
starts again. For aniform distributionof N oscillators, dw = Aw/N. Therefore for a given finite
N, this consideration puts a constraint on how wide can be for Landau damping to be practical.

For a bunch oN patrticles, one expect&w = Aw/N and so the damping ceases afitime
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~N/Aw. In practice, however, since N ~10', this constraintis not significant unless the
frequencyspread Aw is very large. On the other hand,if Aw is too small, the long-time limit
(12.24)is effectively neverreachedand the mechanismdoesnot take effect. The energyis not
storedevenlywithin the bunch:it is selectivelystoredin particleswith a continuouslynarrowing
rangeof frequenciesw nearQ. The energystoredin theseparticlesgrows like t2, but there are
fewer andfewer of themastime progresseslf the driving frequencyQ falls outsidethe rangeof
p(w), damping clearly does not take effect and the instability is not avoided.

The analysisfor a realisticcaseis more complicatedthanwhatis sketchedabovebecause
the amplitudeA of the driving force irEq. (12.22)is itself proportionalto the bunchcentroid [XL.
Furthermore, the force is a superposition of all wake forces from all turns ptimeto Either one
of thesetwo factsimply thatthe cosQt and sinQt termsin Eqg. (12.24) get mixed becausehe
force is out of phasewith x(t). In the frequencydomain,this mixing is a consequencef the
complex nature of the impedance. The fact thatltheng force is proportionalto X[ implies that
a consistency condition must be satisfied by the solution. This condition takes the form of a
dispersion relation. For transversemotion of a single bunch,we look for a solution of the form
x O xCexp(-iQt), in which case the dispersion relation reads

1= NCleZy J'doo plw) (12.26)
2y wg To w-Q-ie

where r, = €*/mc? = 2.82x10™ m s the classicalelectronradius, y is the usual relativistic

factor, T, is the revolution period; is a small numberwhoselimit € - 0" is to be takenafter the

integral is done, and; is defined by

Zy = § Zn(pwy + wp) (12.27)
p:—oo

where the summation is over all integers. In gen#ralsolutionfor Q is complex.In practice,Eq.
(12.26) is used as follows: one assumesrgainform for p(w) (saya Gaussian)andonelets Q
vary in the range (—o,) throughthe realnumbers Then Z; obtainedfrom (12.26)tracesout a
line in the complexplanethatdividesit into two regions.SinceQ is assumedo be real, this line
defines astability boundary. On either side of this boundafy,has a nonzero imaginary partife
actual value ofZ; of the machine lies in the region containing the origithefcomplexplane,then
ImQ < 0 andthe motionis stable,i.e., it is LandaudampedlIf Z; lies in the other region, then
ImQ >0 and the motion grows exponentiallyin time (it is saidto be “antidamped”), and an
instability materializesif ImQ is larger than the dampingtime of the machine.Therefore,by
making severalreasonableassumptionsabout p(w), one gets an approximatecriterion for the
allowed values o that lead to stability. Note thétis methodestablishes stability criterion for
Z-, and not for the impedance itself.

For modern storage rings, the main constraintherpracticality of Landaudampingis that
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the spectrum widtiAw is too narrow. A transverse tune spread is provided natimalige magnet
nonlinearitieswhich producean amplitudedependenc®f the betatrontune. A longitudinal tune
spreadis providedby the nonlinearity of the synchrotronforces at large amplitude. However,
modernlight sourceshave small emittancesand short bunch lengths, and thereforethe natural
motion of the particlesis very linear. As a result,the naturally-existingnonlinearitiesmay not be
strong enoughto producean appreciabletune spread.If this is the case,there are meansof

enhancing the nonlinearities: for transverse motime canadd octupolemagnetsfor longitudinal
motion, one can add a low-power harmonic RF systemthat effectively distorts the harmonic-
oscillatorshapenearthe centerof the RF bucket.Obviously,a delicatecompromiseis neededin

thesecasedecausanonlinearitiesintroducesingle-particleresonancesr chaoticmotion that tend
to degrade the beam lifetime.

12.4 Single-Bunch |Issues!O

Single bunch collective phenomena arise from the interaction of a buncitseftivia wake
fields whose range is comparableotoshorterthanthe bunchlength. The mostubiquitoussingle-
bunch effect is the so-calledlongitudinal microwave ingtability, or turbulent bunch lengthening
instability. This instability doesiot grow indefinitely: if the beamcurrentis large enoughthat this
instability is excited, the bunch lengtimd energyspreadincreaseuntil a new equilibrium situation
is reached.In the transverseplane, the instability that, typically, has lowest threshold, is the
transver se mode-coupling instability, or fast head-tail instability. This instabilityleadsto fast beam
loss; however the currentthresholdis typically higher than for the microwaveinstability, and is
easily avoidable.

12.4.1 Calculation of Instabilities

The calculation of thresholds agdowth ratesof instabilitiesand other collective effectsis
codified in codes suchs ZAP 11 A roughsketchof the procedureapplicableto mostinstabilities
(singlebunchand multi bunch),is as follows: one first assumeghat the low-amplitude particle
motion (transverse or longitudinal) corresponds sogple harmonicoscillator. One thenaddsthe
extra force produced by the wake field, and solves for the frequehayest-orderapproximation.
For example, the horizontal equation of motion at tuior a single particle reads

Xp + (a)ﬁ/c)zxn = const. x . §W(—kL)xk (12.28)
wherethe summationover the transversalipole wake function W representghe superpositionof
the force from all turns prior 0, g is the betatron frequendy,is the ring circumferenceandthe
primes mean derivatives with respect to the azimuthal position s. By substituting
X, = Aexp(-isQ/c), one can solve for the frequencyQ in lowest-orderapproximationin the
impedance.

The real part o€ implies a frequency shift, which is not in itself detrimental. ifhaginary
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part, however, signals a potential instability whose lifetime given by
.[-1 =1mQ. (1229)

If T<0, the disturbance is damped and does not lead to any problems.rBud ithe disturbance
is antidampedand potentially unstable However,one cannotconcludefrom this analysisthat the

disturbancegrows indefinitely becausetherforcesmay becomeimportantat large amplitudethat

stop it from growing further; this is precisely what happensin the longitudinal microwave
instability.

12.4.2 Parasitic Power Loss

As mentionedeatrlier,the beamimagecurrentsdissipateenergyinto the vacuumchamber
componentsn addition to generatingwake fields. This is referredto as parasitic loss, and the
dissipated power is proportional to the squarthebunchcurrent.Although this powerloss does
not inherently affect the beam stability, it can effectively limittlh@chcurrent(and hencethe total
beamcurrent) becauseof the excessiveheatingof the vacuum chamber.This problem usually
affects imperfect junctures in the vacuum chamber such as bellows.

For a beam consisting bf identical bunches, one can generally write the power logkdor
whole beam in the form

P=MIZZ (12.30)

where the bunch currehyis relatedto the total beamcurrent | via 15 = Ml,,, andwherethe loss
impedance Z,, is nothingbut the real part of the effectiveimpedancehatis causingthe energy
loss (Z,,s, Of course, is proportional to the loss factor). We are only concéeredvith Gaussian
bunches whose rms bunch lengtlois(in time units). One canthen calculatefrom Eqg. (12.8) the
loss impedance for various cases.

For the caseof a broad-bandresonatorwith shuntimpedancds,,, quality factor Q, and
resonance frequenay, , thebroad-band lossimpedance Z,, is given by

_ R Gmwy O o)
Ly = F\’bbm%e . (12.31)
This expressionis valid providedthe bunchis short comparedto the bunch spacing,and the
resonator bandwidtls large comparedo the bunchfrequencyw, = Mw,, namely w;, /Q, > wy,.
The bunches need not be equally spaced.
There is also power loss due to the HOMs of the RF cavities. In thisheassonatorare
narrowband, namelw, /Q, < wy,, and the formula is more complicateldor a beamconsistingof
M equally-spacedunchesthat are short comparedto the bunch spacing,the narrowband loss

f In this case one must replace the integral in Eq. (12.8) by a summation over harmonics of the bunch frequency.
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impedance Z,, is given by2

AZ e_((’-’rat)2

Z, = 2MRg, sinz(nwr/wb) T2 (12.32)
whereRs; is the shuntimpedanceof the resonatorand A = rw, /2Q wy,,. Since, by definition,
A <1, the above formula implies that the power loss is substantial only whgn,, is very close
to (within ~A of) aninteger,namelywhenthe resonancdrequencyof the HOM is very closeto a
harmonic of the bunch frequency. When this undesinasienanceonditionis satisfied,the sin?-
termin Eq. (12.32) vanishesand the power loss is proportional to |v|2|§ = IS, which can be
intolerably large. Fortunately, the very narrowness of the mode makes it easy tthevoihdition
by a slight detuning of the HOM frequency.

The ohmic lossesdueto the resistivity of the vacuumchamberare, typically, smallerthan
those from the broad-band resonator described aboveedstese wall loss impedance Z,,, for a
cylindrical pipe is obtained from Eq. (12.20) and is given by

 (a\o DB(wp)0ORO
Zow = r(z)zOD o T (12.33)

where d(wy) is the skin depth at the revolution frequenay,is the rms bunchlength (o, = cay),
and I (3/4) =1.23. The bunches need not be equally spaced.

12.4.3 Longitudinal Effects

It is possible for wakdields to drive coherentoscillationsof the bunchshapeand density.
A general bunch distribution can be analyzed in terms of its radidhzimuthalmomentsin phase
space Radialmodesare characterizedy a radial variation of the distribution without an overall
variationin shapewhile azimuthalmodeshavethe oppositecharacteristicin Fig. 12.5 we sketch
the first three azimuthal modes of oscillations in phase space along with the projectithe tirnte
axis, which correspondso the longitudinal chargedensity.Becausesachelectronin the bunchis
oscillatingat the synchrotronfrequency ws, one can seethat the m-th mode has a characteristic
angularoscillationfrequency mw;g (this index m should not be confusedwith the index m that
labels impedances)The characteristicsignals for radial modes can be found similar to the
azimuthal modes.

As explainedin Chapter4, the synchrotronoscillationsof individual electronsin a bunch
are governed by the voltage in the RF cavity. However, the wakddgald,in effect,to a distortion
of the RF voltage seen by the bunch. Thisnewn as potential well distortion, andis sketchedn
Fig. 12.6.

The effective slope of the bunch voltage dependson the characteristiovavelengthof the
longitudinal wake function and on the length of the bunch. It is typicadsamea Q =1 resonator
form for the longitudinal impedancewith resonantfrequencyequal to the cut-off frequency,

20



w, = w, =c/b. This implies tha for long bunches o, > b), the effective voltageis usually such
that the bunchis lengthenedand the wakefunctionis referredto asinductive.For short bunches,
the bunch may be shortened,in which case the wake function is called capacitive. This is
gualitatively illustrated in Fig. 12.7. The convolutionof the m=0 mode (which representghe
distribution itself, rather than any of the momentsihefbunchwith the reactivepart of the broad-
bandimpedancedetermineghe bunchdistortion.If the bunchis long, its frequencyspectrumis
significant only near zero frequency, where ithpedances inductive and the bunchconsequently
lengthens For short bunchesthe bunch spectrumextendsbeyond w., where the impedanceis
capacitive. If the net effect is positive, there is bunch shortening.

m =1, dipole m =2, quadrupole m = 3, sextupole

Fig. 12.5. Azimuthal bunchoscillation modes.The m-th modehas a characteristicfrequencymws. The
solid and dotted lines describe the distributions separated irbjim#maws. a) Phasespacedistribution. b)

Line density vs. time.
‘/-E time

Fig. 12.6. The bunch wake field changesthe effective slope of the RF voltage and can lead to bunch
lengthening or shortening.

Ve ()

For azimuthal modeswith m=>1, the wake fields also shift the coherentoscillation
frequencyawayfrom its zero-currentvalue maws. Like bunchlengthening,this frequencyshift is
determined by the convolution of the spectrum of the mratkethe reactivepart of the impedance.
To first order approximation in the bunch current, this shift issigptificantfor the centroidof the
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bunch (m=1 mode) because the wake field moves along with the bunch. However, the efieet can
observed by measuring the oscillation frequencies of higher azimuthal modes.
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Fig. 12.7. The bunchspectrumfor bunchoscillation modesm=0,...,3. The effective impedancefor each
mode is the sum over the broad-band impedance weighted by the bunch spectrum.

If the currentis sufficiently high, the high-frequencycomponentf the wake field can
causeripplesin the longitudinal density that can amplify and grow exponentially,leadingto an
instability. For example,this happensto a coasting (unbunched)proton beam below transition
energy(seeChapter2) if the impedancas capacitive.This instability is called the negative mass
instability. However, the energy spread in the beam leads to a sprealutionfrequencywhich,
in turn, leads td.andaudampingof the perturbatiorwhenthe growth time is longerthanthe time
necessaryor the perturbationto dephaseby 180 degrees.The stability limit on the total beam
current is given by

. 2m)(E/e) (o /E)?

12/l
whereeis the electronic chargk,is the beam energyg /E is the relativerms energyspread and
n is the phase-slipfactor, relatedto the momentumcompactionfactor a by n=a —]/ y2 (see
Chapter 2). This relation is commonly referred to akeikeSchnell criterion.13

For bunchedbeamsthis instability is calledthe microwave instability, or turbulent bunch
lengthening instability. The Keil-Schnell criterion cabe usedin this caseif the total beamcurrent
lo in EQ. (12.34)is replacedby the peakcurrent, | = V211, Jwoo; . Thusthe thresholdfor this
instability, expressed in terms of the bunch current, is given by

lo (12.34)
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- mnwoat(E/e)(aE/E)z ] (12'35)
124/l

If the current exceeds this threshold, both the bunch energy spread and the bungrdangthis

phenomenoris referredto asturbulent bunch lengthening. However,this growth stopswhen the

peak current falls below the stability threshold,at which point a new equilibrium situation is

reached, and the instability is said to saturate. The bunch length above threshold is given by

I, thr.

7, =(K1/zy/ny) (12.36)
whereK is given by
__ 1R
= 12.37
J2n(E/e)ve (12.37)

and the energy spread is given by the usual fornaidgE = Vsﬁzaz nNR, wherefis here thausual
relativistic factor.

Eqg. (12.35) assumeghat |Z”(w)/n| is independenbf frequency,in accordancewith the
Q =1 broad-bandesonatormodel. For the caseof a more generalbroad-bandmpedancewith a
power-law frequency dependencetioé form Z(w) U w?, it canbe showr? that the bunchlength
has the dependence

o, DKY@Ha), (12.38)

An exampleof turbulentbunch lengtheningfrom SPEAR4 is shownin Fig. 12.8. The
power law dependence of the burkehgthenings clearly exhibitedin the results,from which one
canextractthe value a =-0.68. This power-lawdependencef the impedances referredto as
“SPEAR scaling,” andit is valid only within a limited rangeof frequenciesbeyond cutoff. A
similar measurementt the Photon Factoryt® yields a=0.976, showing that |Z||(a))/n| is
essentially independent of frequency in this case.

12.4.4 Transverse Effects

As in the longitudinal case,it is possiblefor wakefields to drive coherenttransverse
oscillations within the bunch. However, the situation for transverseoscillations is somewhat
complicatedby the constantexchangeof the head and the tail of the bunch via longitudinal
oscillations.Fortunately,this exchangeprovidesa powerful mechanisnfor Landaudamping of
transverse oscillations.

Consider arextremelysimplified model of a bunchconsistingof two electronsoneat the
head of the bunch, the other one at the tail. Without longituds@llations,the transverseetatron
oscillations of the head would generate a transverse wake field that would dtaiéah¢he bunch
resonantlyas mentionedin Sec.12.4.1.In the caseof linacs, where the synchrotronmotion is
essentiallyfrozen, this phenomenorieadsto the dipole beam breakup instability. However, the
longitudinal oscillations in circular
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Fig. 12.8. Turbulent bunch lengthening measured at SPEAR.

accelerators cause the head and tail of the bunch to exchange places over a sypehiadrdinis
continuous exchange does not allow the growth of the oscillation amplitude of theatalmulate
as quickly, thus extendingthe stability threshold.Obviously, if the transversewake fields are so
intensethat the growth time of the oscillationamplitudeof the tail is lessthanhalf a synchrotron
period, the bunchbecomesunstableandis quickly lost. This instability is variouslyreferredto as
transver se mode-coupling instability, or fast head-tail instability, ortransverse turbulent instability.
The threshold for the bunch current is given by

Ip thr. = \@Tw (12.39)
<BD|ZD|bb>

where the denominator representing averageof the broad-bandransversempedanceveighted
by the lattice beta function. Typically, the thresholdcurrentfor this instability is higher than its
longitudinal counterpart, given by Eq. (12.35).

As in the case of longitudinal oscillations, it is customaryto analyze the transverse
oscillations ofthe bunchin termsof normalmodes referredto as head-tailmodes.Eachhead-tail
mode is specified by indem = 0,+1,£2,... (not to beconfusedwith the longitudinalindex or with
the index of the impedance)vhich indicatesthe numberof betatronwavelengthsper synchrotron
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period. For modem = 0, all electronshavethe samebetatronphase(rigid dipole motion), whereas
for m=x1 the headandtail have oppositephases.The dipole signal for thesetwo modesover
several turns is shown in Fig. 12.9 (modénasm nodesalongthe length of the bunch).Because
of the constantexchangeof the headand tail at the synchrotronfrequency,each mode has a
characteristic angular frequenc% + mws. Thefrequencyspectrumof the highermodespeaksat
higher frequencies, similar to the longitudinal case described above.

y(t)

m=1

Fig. 12.9. Sketch of the=0 andm=1 vertical modes of oscillation.

Under certain conditions, coherdninchoscillationscanbe excitedfor currentsbelow the
instability threshold. An example ofaherentvertical head-tailoscillation observedat LEP with a
streak camera is shown in Figure 12.10.

If the chromaticityis not zero (see Chapter2), the energyspreadof electronsleadsto a
modulationof the betatrontune at the synchrotrontune. This frequency modulation createsa
relative phase shift between the head and the tail of the bunch. Becthis@béseshift, the wake
field produced by the head of the bumailonger drivesthe tail on resonanceThe corresponding
impedance has esistivepart that canleadto dampingor antidampingof the tail oscillation. This
effect is referredto as head-tail damping and is usedquite often to damp coherenttransverse
motion. Above transitionenergy,which is the typical situationfor electronstoragerings, the rigid
transverse dipole moden(= 0) is damped bypositive chromaticitywhile the m= 1 modes(head
and tail out of phase) are antidamped. Howevergtheth rate mustexceedhe radiationdamping
rate for the beam to become unstable. This allows most electron storage opgsatestably with
a slightly positive chromaticity.
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Fig. 12.10. Turn-by-turn pictures of a bunch executing vertical headgeiilationsin the electronstorage
ring LEP. The bunch is observed from the side. The synchrotron tune isrh@.tiorizontalscaleis 1000
ps for the total image, not counting the table of numbers at the right. The vectiézis uncalibratedput
the vertical rms beam size is ~0.2 mm at the observation point. Photo courtesy of E. Rossa.

12.5 Coupled-Bunch Instabilities0,16

12.5.1 Basics

Wake fields whoserangeis long enoughto couplethe motion of the differentbunchesn
the beam can cause coupled-bunch instabilities. These wake fields are typically phydoasdw
resonances in the RF cavities. Even though they remain localifegldavities,they last for a long
enoughtime that the motion of any given bunchis perturbedby all its predecessord heselong-
lastingwake forcescan generatea transverseor longitudinal coherentstructurein the bunch-to-
bunch oscillations. If theseoherentoscillationsgrow indefinitely, they leadto rapid beamloss. If
they remainboundedthey degradethe beamquality by inducing a larger effective beamsize or
oscillations in the arrival time.

Although it is possible for wakefields to couple thenchshapeoscillationsfrom bunchto
bunch, thescopeof this sectionis limited to dipole coupled-bunch oscillations sincethesearethe
dominantconcernfor the designof a light source(or any other multibunch circular machine).
These oscillations are characterizedioymotion of the bunchesabouttheir nominal centersasif
they wererigid “macroparticles.”A sketchof a coherenttransversecoupled-bunctoscillation is
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shown in Fig. 12.11.

Fig. 12.11. Sketch of a coherent transverse coupled-bunch oscillation.

In analogy with the problem of coupled harmonic oscillators, it is bestatyzethe motion
of multibunch modes rather than that of individbahchesThe simplestcaseis that of a beamof
M rigid, identical electron bunchesspacedequally around the ring. For either transverseor
longitudinal oscillations, each multibunch mode is characterizedoy a bunch-to-bunchphase
differenceof Ap=2m/M, wherethe modenumberl can only take the values| =0,1,...,M —1.
The net phase advance around the ring is constrained tmbkige of 277 whenobservedrom a
single point in the ring, each multibunofodeis associatedvith a characteristicsetof frequencies
given by

wp = (PM % (I +v))awy (12.40)

wherep is someinteger and v is either the synchrotrontune vg or the transversetune Vg,
depending on whether the oscillations are longitudinal or transverse, respectively.

A snapshot view of a multibunch mode in the ring is illustrated inJdL2for the caseof
M = 3 bunches.In this case,the longitudinal oscillations have relative phasesAg@ = 2m/3 or
A@=4m/3 (multibunch modes =1 and | = 2, respectively). The correspondimgvesare shown
in Figs. 12.13aand 12.13b,andthe resultingfrequencyspectrumin Fig. 12.14,wherethe modes
appear as sidebands separated from the revolution harmonics by
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Fig. 12.12. Snapshot of a three-bunch beam executing multibunch oscillations.
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Fig. 12.13.An illustration of the characteristicsignal at a fixed locationin the ring for eachmultibunch
mode. (a) Modé=1. (b) Modd=2. The dotsrepresenthe signal sampledat the detector.The thick dashed
lines show the motion of individudunchesThe narrow, high frequencyline showsthe lowest frequency
wave that fits the sampled measurement points.
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Fig. 12.14. Coupled-buncimodespectrumfor 3 bunchescorrespondingo Eq. (12.40). The sidebandsre
labeled with the corresponding coupled-bunch mode index. tish#lationsare longitudinal, the sidebands
are split from the harmonics of the revolution frequencytby; if transverse, by Vg

12.5.2 Longitudinal Coupled-Bunch Instability

It is useful to give a physical picture of a simple longitudinal coupled-bunchnstability.
Considera singlerigid bunchexecutingsynchrotronoscillations;this bunchis in a storagering
containinganidle RF cavity with a single resonanimodewhosefrequencycanbe tunedover any
desiredrange.In addition,the ring is assumedo have at leastone other RF cavity that supplies
powerto the beambut hasno other effects.For the sakeof illustration, assumethat the resonant
frequencyof theidle cavity is tunedto abouttwice the revolutionfrequency.As the beampasses
throughthis elementon somearbitrary turn, it inducesa voltage that oscillatesat the resonant
frequency, as shown in Fig. 12.15a (a negative voltage implies decelefati@mbunch;the beam-
inducedvoltage from subsequenpassage®f the bunchis not shown).During the half of the
synchrotronoscillation when the energy of the bunch is smaller than the design energy, the
revolution periodis shorter than nominal, and the bunch arrives at the idle cavity ¢aalean on-
energy bunch. Theppositeis true during the half of the synchrotronoscillationwhenthe energy
of the bunchis greaterthanthe designenergy.In either case the bunchseesthe inducedvoltage
from the previous turn as indicated.

In a first example we assumehat the frequencyof the resonanimodeof the idle cavity is
slightly smaller than twice the revolutidrequency.Whenthe energyof the bunchis smallerthan
its designvalue,the bunchseedessdeceleratingsoltagethanwhenits energyis abovethe design
value. Therefore, over the course of several turns, the energy oscillations of the buncnuatbeys
and smaller. Thus the interaction with the resonatordampsthe oscillations and the motion is
inherentlystable.This effectis usually referredto as Robinson dampingl? when the resonatoris
the fundamental mode of the RF cavity.

In a secondexample Jet the frequencyof the resonanimodebe tunedslightly abovetwice
the revolution frequency. The relative arrival times are shifted relative to the preasmgss shown

9We assume that the ring is operated above transition energy since, in practice, this is the typical case.
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in Fig. 12.15b.In this case,the below-energybunchlosesmore energythan the above-energy
bunchresultingin an unstableoscillation(if the ring happengo be operatedbelow transition, the
two cases are reversed).

a) resonant mode tuned below 2f; stable

 late

I'b) resonant modle tuned above Zf'o; unstable

Cavity Voltage (arbitrary units)

_...
.""
,.
B
-i_
FE—

Turn Number Frequency

Fig. 12.15. A time-domain view of a resonator voltage drivingngitudinal coupled-bunchnstability and
the correspondindrequencydomainview. The sidebandof the revolution harmonicsrepresenthe phase
modulationof the beam currentresulting from the synchrotronoscillations, and the dashedline is the
resistive part of a resonator impedance.

Although this simplified description gives a view of the interaction of the bunch witlvits
voltage over the courseof two revolutions,it is inadequateor the descriptionof the multi-turn
cumulativeeffect. For instancethe net beam-inducedoltagein the exampleabovemight sumto
zeroover the courseof manyturns,or the beam-inducedoltagefrom otherbunchesn the beam
might cancel the voltage from the first bundhe abovetreatmentalsoimplies a point-like charge.
In reality, electron bunches have a distributiothigir energy,position,and synchrotronfrequency,
and beam wake fields can affect the electrons within the bunch.

The obvious difficulties of understanditise summationof beam-inducedoltagesandthe
resulting effectson a bunchedbeam over many turns are greatly simplified by analyzing the
problemin the frequencydomain. Considerthe frequencyspectrumof a single bunch and the
resistivepart of a resonatoimpedanceas shownin Fig. 12.15. The revolution frequencyof the
bunchincreaseqdecreasesyvhen its energyis greaterthan (smaller than) the design energy,
corresponding, respectively, to the lower and upper sidebands. The energy absorbeesonéme
mode is proportional to the resistive partld impedanceat the frequencyof the sidebandWhen
the idle cavityis tunedto the RF frequency,it absorbshe sameenergyfrom the upperandlower
sidebands. In other words, it absorbs the same energy from the bunch ishelow energyas it
does when the bunch is abaseergy.When the cavity is tunedbelow a multiple of the revolution
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frequency,asshownin Fig. 12.15a,it absorbsmore energyfrom the bunchwhenit is abovethe
design energy than whenigt below, andis thus stable.But if the resonanimodeis tunedabovea
multiple of the revolution frequency,as shownin Fig. 12.15b,the situationis reversedand the
energy oscillations of the bunch are antidamped.

In general,as mentionedearlier, the interactionof the beamwith the wake fields leadsto
both an amplitude growth and a frequency stiifthe longitudinal beamoscillations.For coupled-
bunch modé thecomplex coherent frequency shift is given by

AQh = iM[ZII]leff (12.41)
4nvg(E/e) :
where the effective impedance is themof the impedanceaveightedby the beamspectrumandis
given by

| _ et C()p _(w O.T)Z
(2] = > o Alwp)e 7T (12.42)
p=—0 Wgrr

and wherew,, = (pM +1 +vg)awy.

The real part ofAQ yieldsthe shift in the oscillation frequencyof the mode,andis driven
by the reactive part of the impedance. The imaginary part is the growtf tageoscillation,andis
driven by the resistive part of the impedance. Note that highguencyresonatordiavea stronger
effect on longitudinal motion becausethe phasemodulation of the beam is larger at higher
frequencies. The motion becomes unstable when the growth rate is pasiteeceedshe sum of
the radiation and Landau damping rates.

For example,n the caseof a single high-Q resonatotunednearthe frequency pMwy, a
bunch whose length is short compared to the wavelength of the resonator has a growth rate given |

1 haoloRar (12.43)
T,  4mvs(Ele)

where

Rett = RAZ ]y, = (M +1+ Vo) ReZ((pM +1 + vg)awp) /-
(PM =1 =vg)ReZ((pM ~1 = vg)ay) /h.

(12.44)

In other words, the growth rate is proportional to the difference in impedance between thendpper
lower sidebands of the coupled-burmlbdein question.This agreeswith the qualitativeargument
given above.

In actual storagerings which observelongitudinal instabilities, the oscillations typically
grow to an amplitudewhere some other damping mechanismsuch as Landau damping limits
further growth. Finite-amplitudelongitudinal oscillationd8 can affect the averagebeamsize at a
point in the lattice with dispersionand thus the average brightnessof the photon beam.
Furthermore, because of the high magnetic quality of modern insertion devices, the spectad! width
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higherharmonicsof the synchrotronlight is sensitiveto energyoscillations,evenif thereis no
effectiveincreasan the transversebeamsize, as exemplifiedin initial measurementat the ALS
shownin Fig 12.16.The top graphshowsa measurementf the electronbeamspectrumfrom a

BPM sum signal near several revolution harmonics with all RF buckets fillectefitialpeaksare
revolution harmonicswith phasemodulationsidebandsndicating large amplitude coupled-bunch
longitudinal oscillations. The bottom graph shows significant spectral broadening of the
synchrotron radiation at the undulator third harmonic in multibunch mode vs. single bunch mode.
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Fig. 12.16. The ALS electron beam spectrum near several revolution harmoniedl \REh bucketsfilled

indicateslarge amplitudelongtitudinal coupled-buncloscillations. The central peakin eachgraphis the
signal at the nth revolution harmonicabovethe RF frequencyand the phasemodulation sidebandsare
oscillationsof variousnormal modesof the beam.The bottom graphshowsinitial measurementsf the
undulator 3rd harmonitakenundersimilar conditionsduring the commissioningof an ALS undulator.A

marked increase in the spectral width of higher harmonics of the synchrotroreighisfrom the coupled-
bunch energy oscillations.

12.5.3 Transverse Coupled-Bunch Instability

Transverse instabilities are driveg narrow-banddipole HOMs of the RF cavity andalso
by the resistive wall impedance. For low frequencies, the skin depth is reltngsyand hencethe
wake field can last for a sufficiently long tinb@ couplethe motion of different bunchesSincethe
transverse impedance scales with¢thamberadiusas b3 (viz. Egs.(12.6) and (12.20)),it is of
particular concernfor future light sourceswhich require small chambersizesto accommodate
strong insertion devices.
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The physical mechanism ftine transversecoupled-bunchnstabilitiesis similar to that for
longitudinalinstabilities. The transversecomplex frequencyshift for coupled-bunchmodel and
dipole head-tail mode (rigid bunch shape) is given by

AQL = —i M[ZD]L&, (12.45)

4n(E/e)

where

| ® ~(wey)? .
[Z0]er. = p:z—fm(wp)e o (12.46)

Here w, = (pM +1 + V), w; = (pM +1 +v = &/n)ay, & is the chromaticity, B is the beta
function (x or y) at the locationof the impedanceand vy is the transversdune.In the caseof a
single high-Q resonatortuned nearthe frequency pMwy,, with zero chromaticity and a bunch
length short compared to the resonant wavelength of the resonator, the growth rate is given by

1 _ woloRer . (12.47)
Tn)  An(Ele)

where

Ret.o1 = —Bo Re[ZD(( pM +1 +vp)wg) = Zo((pM -1 - Vm)wo)]- (12.48)

12.5.4 Coupled-Bunch Instability Cures!®

The most obvious remedy for coupled-bunchinstabilities is to eliminate or reducethe
strength of the HOMs in the design of the &dvity. However,this reductionusually comesat the
expense of the strength of the fundamental mode, thus requiring mofeRqialverto supplythe
requisite voltage to the beam. Tuned antennae can be used to couple energy @a/ay thehere
is only a single troublesome HOM. Another method is to adjust the frequentiesH®Ms such
that they lie in betweenharmful beam resonantfrequencies.However, becausethe minimum
spacing between these frequenciesis this methods possibleonly for HOMs with bandwidths
much smaller than w,. Furthermore,the HOM frequenciesshift with changesin the cavity
temperature and the position of the tuning tbds makingthemdifficult to control. For a storage
ring with multiple RF cavities, it is possible arrangethe HOM frequencief eachcavity so that
they do not coincide with each oth#érus reducingthe scaleof the problem.Another methodis to
increasethe effect of Landaudampingby increasingthe effective synchrotronor betatrontune
spread. This can be accomplished in the longitudinal plane by rith@ng the RF cavity at lower
voltage and thus at longer bunch length, or by adding a higher harmonic RF Tawityne spread
in the transverselanecanbe increasedy addingoctupolemagnetgo the storagering lattice. A
variation on this schemeis to createa bunch-to-bunchsynchrotronor betatrontune spreadby
modulatingthe RF voltageor by usingan RF quadrupole® A bunch-to-bunchsynchrotrontune
spreadcan also be generatedoy transientbeamloading effects induced by gapsin the beam.
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Finally, the most powerful method is to addactive feedbacksystemwhich senseghe oscillation
of eachbunchand providesa correctivekick on the following turn. The cure for coupled-bunch
instabilities in a storage ring is usually a combination of all of the above.

12.6 Trapped lons and Beam Lifetime | ssues

12.6.1 Trapped lons?1

Positive ions are created when the beam ioriteegas moleculesremainingin the vacuum
chamber. Since the beam is negatively charged, the ions rea@medin the electric potentialwell
of the beam. Possible consequences from this are: reducedifieéiama due to multiple scattering,
tune spread,emittanceincrease and electron-ioncoherentoscillations.lon trappingis a poorly
understoodohenomenonand has been observedin all synchrotronlight sourcesoperatingin
multibunch mode anah many otherelectronstoragerings. An obviousway to avoidion trapping
altogetheris to usepositronsratherthanelectronsin the beam.This solution, however,requiresa
positron source, which is typically quite expensive. More typical solutions are described below.

Nearthe beamcenter,a trappedion with net chargeZe and atomic numberA oscillates
vertically in the potentialwell of an electronbeamof total current I, with an averageangular
frequency given by

Wl = 2ze o o (12.49)
mpcA ay(ax +ay)

with a corresponding horizontal frequenalytainedfrom the aboveby the exchangeoy  ox. In

this expressiorm, is the proton masand o, and o, arethe horizontaland vertical rms sizesof

the bunch,respectively at the ring locationwheretheion is trapped.By applying linear transport
theory to the motion of the ions, one can deaw®nditionfor the ions to be stablytrapped.For a
beam with a uniform bunch population, the condition is

(wym)2 <4 (12.50)

whereAt is the bunchseparatiorin time (it is only necessaryto considerthe vertical oscillations
becausetypically, o, << o, andthereforew, > w,). This conditionimplies that all ions with a
mass-to-charge ratio larger than a critical value,

A DAD __ RN (12.51)

will be trapped.Here r, =e’/m,c® =1.535x107*° m is the classicalproton radius, N is the
number of electrons per bunch, afids the number of bunches in the beam.

If no stepsare takento clearthe ions, they progressivelyaccumulateand neutralize the
electron beam. As a result, the valué&oh Eq. (12.51)effectively decreaseand (A/Z), becomes
smaller, so that ions with lower and lower A/Z ratios can becometrapped in turn. This
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phenomenon is known as tioe ladder.

Since g, << g, the potential well is much deeperin the vertical direction than in the
horizontal, and it is deepest whewg; is smallestnamelynearthe defocusingquadrupolemagnets
in the ring. As a result,ions tend to get preferentially trappedat theselocations. One way to
eliminate theseions is by meansof clearing electrodes typically placed near the defocusing
guadrupoles. For low beam currents, a DC voltage of a fevg kigually sufficientto pull the ions
away from the potentialwell. For large beamcurrentsthe requiredvoltagemight be too largeand
thus this techniquemight be impracticalor detrimentalto the electron beam.In this case,ion
clearing is more effective if the electrode voltage has an AC component whose fregLemgsito
the ion frequency given by Eq. (12.49), in addition to a DC compolmeatldition,for beamswith
many bunches, another method to clear ions is to kega@in the bunchtrain typically equivalent
to ~10% of the beam. This ion-clearing gap leadsto instabilitiesin the ion motion that are
analogous to the betatron motion stopbands arising from resonareparticle beam.In practice,
a combination of all these methods is required.

12.6.2 Intrabeam and Touschek Scattering22,23

As time progresses, thgarticleswithin a bunchin a storedbeamscatteroff eachothervia
the Coulombforce, exciting transversend longitudinal oscillations.As a resultof multiple small-
anglescatteringparticlesdiffuse in phasespacecausinga redistributionof all three emittances.
This emittance redistribution is usually referred to asrifnabeam scattering effect. In addition,on
rare occasionsthe scatteringnvolveswide anglesand, as a result, a particle can fall outsidethe
dynamic apertureor the energy acceptanceof the machine,and gets lost. This beam lifetime
limitation dueto occasionalarge-angleCoulombscatteringis usually referredto asthe Touschek
effect. Obviously there is no conceptual difference between the two effects. However, sifeadhey
to different manifestationsn the beamdynamicsthey are traditionally analyzedseparatelyln the
caseof the intrabeamscatteringeffect, the quantitiesof interestare the damping(or growth) rates
for the threeemittancesjn the caseof the Touschekeffect, the quantity of interestis the beam
lifetime.

Clearly, both effects have a strong dependence on beam energy, becomipgomouaced
at lower energies. This can be qualitatively understood by noting that,lialtHeame of reference,
the electric and magnetic forces on any given parictestcanceleachotherout at high energies,
leaving anet Lorentzforce proportionalto y'2 (v is herethe usualrelativistic factor). As a result,
typically, neitherthe intrabeameffect or the Touschekeffect leadsto significant problemsin the
operationof storagerings at energies2 1 GeV. However,both effectsscaleunfavorablywith the
beamdensity N/o,0,0,, wherethe o’'s are the rms beam izes. Thereforethese effects can
become important for modern light sources, which emphasize intense, small bunches.

In all light sourcesandindeedin all storagerings built so far, the particle motion is, on
averagenonrelativisticin the beamrest frame. In this frame, typically the horizontal and vertical
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energy spreadsare larger than the longitudinal. Therefore small-angle Coulomb scattering
predominantly transfers energy from the transverse motion to the longitudinal, leadingrpecto
dampingof the transverseemittancesat the expenseof growth of the longitudinal. However, a
changein the particle energyexcites,in turn, horizontalmotion dueto the dispersionin the ring.
Typically, this effect more than compensatethe dampingof the horizontalemittance,and the net
result is a damping of the vertical emittanceand growth of both horizontal and longitudinal
emittances. During this process, the quantity

~n(og/E)* +e./By + e,/ By (12.52)

remains invariantyhere thee's are the emittances and tfiés are the ring-averaged beta functions.
The Touschek lifetime is given by

2
1__ N F() (12.53)
T 8ny50§,axayaz o

where o, is the rms of the beam divergence, arnsldefined by
5= 2op/ prf (12.54)
YOy

where Ap/p is the momentumacceptancef the machine,which is determined,n turn, by the
smallestof the RF bucketheightor the energyapertureof the ring. The function F(Jd) depends
weakly ond for smalld. For the rang® < 1072, which is typical, it is given by

F(3) =-In(y) - 3/2 (12.55)
wherey, =1.78 is Euler’s constant.
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