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Abstract

We give the expressions for the geometrical reduction
factor of the luminosity and the geometrical beam-beam
“aggravating factor” for the general asymmetric case, for
tri-gaussian bunches colliding head-on. With these for-
mulas we attempt a (limited) analytic understanding of
the multiparticle tracking simulations carried out for the
proposed SLAC/LBL/LLNL B factory [1] when parasitic
crossings are ignored. We conclude the following: (a) the
geometrical reduction in luminosity is ∼ 6% relative to
the zero-bunch-length (nominal) value; (b) only the ver-
tical beam-beam parameter of the LER is significantly
altered by the hourglass effect: the geometrical enhance-
ment of the central positron’s vertical beam-beam param-
eter is ∼ 10% relative to the nominal value, and (c) the
positrons at the head or tail of the bunch have vertical
beam-beam parameters much larger than nominal. We
discuss the electromagnetic disruption effect only quali-
tatively. This effect probably compensates (or overcom-
pensates) the geometrical reduction of the luminosity, and
it is possibly detrimental for the beam-beam parameters.
This article summarizes Ref. 2.

1 Introduction

Although proposed B factories [1] call for designs that are
asymmetric in energy, beam current and emittances, they
also invoke to a greater or lesser degree a “transparency
condition” by virtue of which the beam sizes are pairwise
equal [3]. Because of the beam-beam interaction, how-
ever, the beams become different in size at least to some
degree. Expressions available in the literature [4–6] for
the hourglass factors for the luminosity and beam-beam
parameters assume some sort of equality among the beam
sizes or lattice functions. In this note we provide gener-
alizations that are applicable to the most general asym-
metric case, when the four beta-functions and the six rms
beam sizes are arbitrary. With these formulas we attempt
a (limited) analytic understanding of the multiparticle
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tracking results for the proposed SLAC/LBL/LLNL B
factory [1] when parasitic collisions are ignored.

2 Luminosity

Consider two bunches with N+ and N− particles, respec-
tively, moving in equal and opposite directions with speed
c, with tri-gaussian particle distributions, such that the
centers collide at the optical interaction point (IP, s = 0)
with no displacement. We assume that the interaction
region is a dispersionless drift section and that the IP is
a symmetry point of the lattice. Then the transverse rms
sizes σx+, σy+, σx− and σy− have an s dependence of the
form σ2 = σ∗2 × (1 + s2/β∗2). The hourglass reduction
factor for the luminosity is [2]

R(tx, ty) ≡ LL0
=

∞∫
−∞

dt√
π

exp(−t2)√
(1 + t2/t2x)(1 + t2/t2y)

(1)

where L is the actual luminosity and L0 is the luminosity
in the zero-bunch-length limit,

L0 =
fbN+N−

2π
√

(σ∗2x+ + σ∗2x−)(σ∗2y+ + σ∗2y−)
(2)

where fb is the bunch collision frequency, and tx is defined
by

t2x =
2(σ∗2x+ + σ∗2x−)

(σ2
s+ + σ2

s−)
(
σ∗2x+/β

∗2
x+ + σ∗2x−/β

∗2
x−
) (3)

with a corresponding expression for ty. The superscript
∗ refers to the IP (s = 0) and σs± are the rms bunch
lengths. We exhibit R(tx, ty) in Fig. 1.

It is easy to see from Eq. (1) that R is always < 1,
except that R(∞,∞) = 1, as it should.

If both beams are flat, with σx± À σy±, then tx À 1
and (1) can be expressed in terms of a modified Bessel
function. This result is of similar form to that of Ivanov
et al. [5] but is of more general validity because it does
not assume β∗y+ = β∗y− or σs+ = σs− or σ∗y+ = σ∗y−.

If the beams are such that tx = ty (which may hap-
pen naturally in a round-beam design), then (1) can be
expressed in terms of the complementary error function.

1



Figure 1: The luminosity reduction factor, Eq. (1), plot-
ted vs. ty for various values of tx.

3 Beam-Beam Parameters

We focus on a single particle, say a positron, as it passes
through the opposing electron bunch. In a first-order cal-
culation we can assume that the particle follows a straight
line trajectory with constant speed c. We assume that
this particle is close to the collision axis and is displaced
longitudinally by a finite distance z from the center of
its own bunch. We assume that z is constant during the
collision process (or during several successive collisions),
which is a very good approximation in practice. Then the
“aggravating factor” [4] for the positron’s vertical beam-
beam parameter is [2],

Ry+(z) ≡ ξy+(z)/ξ0y+ =
∞∫
−∞

dt√
π

(1 + t2/t21) exp(−(t− t0)2)√
1 + t2/t22

(
v
√

1 + t2/t22 + h
√

1 + t2/t23

) (4)

where h = σ∗x−/(σ
∗
x− + σ∗y−), v = σ∗y−/(σ

∗
x− + σ∗y−), t0 =

z/
√

2σs−, t1 =
√

2β∗y+/σs−, t2 =
√

2β∗y−/σs− and t3 =√
2β∗x−/σs−. The nominal (zero-bunch-length) vertical

beam-beam parameter ξ0y+ of the central positron is

ξ0y+ =
r0N−β∗y+

2πγ+σ∗y−(σ∗x− + σ∗y−)
(5)

where r0 is the classical electron radius and γ+ is the
usual relativistic factor. The expressions for the remain-
ing three beam-beam parameters ξx+, ξx− and ξy− are
obtained from Eqs. (4) and (5) by the substitutions x↔ y
and/or +↔ − in h, v and the ti’s.

It should be noted that the aggravating factors can be
> 1 or < 1, as opposed to the luminosity reduction factor,
which is always < 1. However, if β∗x+ = β∗y+ = β∗x− = β∗y−
we obtain

Rx+(z) = Ry+(z) = Rx−(z) = Ry−(z) = 1 (6)

for all z regardless of the beam sizes. This allows, in
principle, for the possibility of designing the lattice so
that there is no hourglass effect on the beam-beam pa-
rameters.

If the beams are flat such that σx+ À σy+, σx− À σy−,
β∗x+ À β∗y+ and β∗x− À β∗y−, Eq. (4) yields, for the central
particle, Rx+(0) ' Rx−(0) ' 1, and

Ry+(0) ' t2
2
√
π
et

2
2/2
[
(2− ρ)K0(t22/2) + ρK1(t22/2)

]
(7)

where ρ ≡ (t2/t1)2 and K0, K1 are Bessel functions.
Ry−(0) is obtained from (7) by exchanging t1 ↔ t2.

If t2 = t3 for both beams (such as for round beams),
then β∗x+ = β∗y+ and β∗x− = β∗y−; we allow, however, for
the possibility that β∗x+ 6= β∗x− and we assume nothing
about the six rms beam sizes. Then we find that

Rx+(0) = Ry+(0) = ρ+ (1− ρ)
√
π t2 exp(t22) erfc(t2) (8)

where erfc(x) is the complementary error function.
Rx−(0) = Ry−(0) is obtained by exchanging t1 ↔ t2.

For particles away from the bunch center, Eq. (4) im-
plies that ξ(z) = ξ(−z) for each of the four beam-beam
parameters. This means that the particles at the head
and the tail of the bunch suffer the same beam-beam
tune shift. This property follows from the assumed lattice
symmetry about the IP and the assumed lack of bunch
disruption.

The aggravating factors saturate [2] to a limit when
z → ∞. In practice this limit applies to particles with
|z| À β∗, where β∗ is here any of the four beta-functions
at the IP; therefore this limit may or may not be sensibly
reached in specific machine designs. Furthermore, this
property follows from a first-order calculation; it may not
hold in higher orders if ξ(∞) is large.

4 B factory

For nominal parameters of the APIARY 6.3-D design for
the proposed SLAC/LBL/LLNL B factory [1] we obtain
tx = 47.43 and ty = 1.897, so that R = 0.945. This
implies that the luminosity is 5.5% smaller than the zero-
bunch-length estimate.

We also obtain Ry+(0) = 1.093, so that the vertical
beam-beam parameter of the central positron is 9.3%
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Figure 2: The vertical beam-beam parameter for the
positron, ξy+(z), for nominal APIARY 6.3-D parameters.
The nominal value is ξ0 = 0.03 for all four beam-beam
parameters. The almost linear rise is explained in Ref. 2.

larger than the nominal value. The other three aggra-
vating factors are slightly smaller than unity [2]. For
particles away from the center of the bunch, Ry+ grows
almost linearly with z. Fig. 2 shows ξy+ as a function of
the positron’s longitudinal distance away from the center
of the bunch. The remaining three aggravating factors
deviate significantly from unity only for z ∼> 10σs. Fig. 3
shows all four aggravating factors as a function of the
particle’s distance away from the center of the bunch.

A qualitative estimate of the electromagnetic bunch
disruption can be obtained from results for multiparti-
cle simulations for single-pass, symmetric, beam colli-
sions [7]. For flat bunches that are uniform in x and gaus-
sian in y and s, one obtains, from Chen’s empirical fit,
that the disruption is HD = 0.998 with an estimated ac-
curacy of ±10%, for nominal APIARY 6.3-D parameters
(A = 0.53 and D = 0.20). Since HD takes into account
both the geometrical and the electromagnetic disruption
effects, we conclude, to this accuracy, that the geometri-
cal reduction in luminosity is compensated by the pinch-
ing effect. This result is consistent with the multiparti-
cle tracking simulation results for the SLAC/LBL/LLNL
B factory when parasitic collisions are ignored [1]. One
should keep in mind, however, that since Chen’s results
apply to single-pass collisions, a potentially important de-
pendence on the tune of the machine may be missed in
this interpretation.

Figure 3: The aggravating factors for both beams for
nominal APIARY 6.3-D parameters. The saturation
property is seen at (unphysically) large values of z (σs± =
1 cm).

5 Conclusions

As in the symmetric case, the luminosity reduction factor
is a sensitive function of β∗/σs. Unlike the symmetric
case, however, this factor depends explicitly on the trans-
verse bunch sizes in addition to the bunch lengths and
beta-functions.

A numerical application to the SLAC/LBL/LLNL B
factory shows a 5.5% geometrical reduction of the lumi-
nosity and a 9.3% geometrical enhancement of the central
positron’s ξy+ relative to the nominal values.

Positrons with x ' y ' 0 at the head or tail of the
bunch have higher ξy+ than the central positron due to
the fact that they sample, on average, a higher β∗y+ during
the collision process (β∗y+ = 1.5 cm is the smallest of the
four β∗’s). Positrons with |z| > 6σs have ξy+ > 0.1;
this number can be made smaller, however, by a modest
increase in β∗y+ [2].

We estimate the electromagnetic pinching effect to be
small, since it modifies the results of the geometrical cal-
culations by ∼ ±10%. It is probably beneficial for the
luminosity, and it is probably detrimental for the beam-
beam parameters.
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